Properties

Label 2-151008-1.1-c1-0-17
Degree $2$
Conductor $151008$
Sign $1$
Analytic cond. $1205.80$
Root an. cond. $34.7247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 13-s − 4·19-s − 5·25-s + 27-s + 6·29-s + 10·31-s + 4·37-s + 39-s + 6·41-s − 10·43-s + 2·47-s − 7·49-s + 14·53-s − 4·57-s − 2·61-s + 8·67-s − 6·71-s − 10·73-s − 5·75-s + 8·79-s + 81-s + 8·83-s + 6·87-s + 6·89-s + 10·93-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.277·13-s − 0.917·19-s − 25-s + 0.192·27-s + 1.11·29-s + 1.79·31-s + 0.657·37-s + 0.160·39-s + 0.937·41-s − 1.52·43-s + 0.291·47-s − 49-s + 1.92·53-s − 0.529·57-s − 0.256·61-s + 0.977·67-s − 0.712·71-s − 1.17·73-s − 0.577·75-s + 0.900·79-s + 1/9·81-s + 0.878·83-s + 0.643·87-s + 0.635·89-s + 1.03·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 151008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(151008\)    =    \(2^{5} \cdot 3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1205.80\)
Root analytic conductor: \(34.7247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 151008,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.350457549\)
\(L(\frac12)\) \(\approx\) \(3.350457549\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36639712306043, −13.02100851996683, −12.38879038634420, −11.82654353903299, −11.61510112202782, −10.87699863067817, −10.31222959975356, −10.05038066582675, −9.522802795968476, −8.872062405248204, −8.503911792491853, −8.035831860119711, −7.658374309115031, −6.925904224633466, −6.401349434050967, −6.118226245077648, −5.358906849882531, −4.657180359153792, −4.321993043863153, −3.709437343321722, −3.097837553465306, −2.489983560270632, −2.030235596574436, −1.209698476376912, −0.5449485207898809, 0.5449485207898809, 1.209698476376912, 2.030235596574436, 2.489983560270632, 3.097837553465306, 3.709437343321722, 4.321993043863153, 4.657180359153792, 5.358906849882531, 6.118226245077648, 6.401349434050967, 6.925904224633466, 7.658374309115031, 8.035831860119711, 8.503911792491853, 8.872062405248204, 9.522802795968476, 10.05038066582675, 10.31222959975356, 10.87699863067817, 11.61510112202782, 11.82654353903299, 12.38879038634420, 13.02100851996683, 13.36639712306043

Graph of the $Z$-function along the critical line