Properties

Label 2-14976-1.1-c1-0-4
Degree $2$
Conductor $14976$
Sign $1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s + 13-s − 2·17-s − 4·23-s − 25-s + 2·29-s + 2·31-s − 4·35-s + 6·37-s + 6·41-s + 2·43-s − 6·47-s − 3·49-s − 6·53-s + 8·59-s − 2·61-s − 2·65-s + 8·67-s + 2·71-s − 14·73-s + 4·79-s − 8·83-s + 4·85-s + 14·89-s + 2·91-s + 2·97-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s + 0.277·13-s − 0.485·17-s − 0.834·23-s − 1/5·25-s + 0.371·29-s + 0.359·31-s − 0.676·35-s + 0.986·37-s + 0.937·41-s + 0.304·43-s − 0.875·47-s − 3/7·49-s − 0.824·53-s + 1.04·59-s − 0.256·61-s − 0.248·65-s + 0.977·67-s + 0.237·71-s − 1.63·73-s + 0.450·79-s − 0.878·83-s + 0.433·85-s + 1.48·89-s + 0.209·91-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.610403191\)
\(L(\frac12)\) \(\approx\) \(1.610403191\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94321759061702, −15.66353518993258, −14.85850302280320, −14.51335064592668, −13.91702078405092, −13.23078824898547, −12.69095525355953, −11.99892284372783, −11.45092925915429, −11.21561244056841, −10.45635725632709, −9.809400138014201, −9.121685942451723, −8.398637866846042, −7.948108576409562, −7.562522633867154, −6.673609516555069, −6.103090585456340, −5.307788575150000, −4.488605178324011, −4.155704528846821, −3.329441081067830, −2.446616028378223, −1.598293140672586, −0.5623645166211149, 0.5623645166211149, 1.598293140672586, 2.446616028378223, 3.329441081067830, 4.155704528846821, 4.488605178324011, 5.307788575150000, 6.103090585456340, 6.673609516555069, 7.562522633867154, 7.948108576409562, 8.398637866846042, 9.121685942451723, 9.809400138014201, 10.45635725632709, 11.21561244056841, 11.45092925915429, 11.99892284372783, 12.69095525355953, 13.23078824898547, 13.91702078405092, 14.51335064592668, 14.85850302280320, 15.66353518993258, 15.94321759061702

Graph of the $Z$-function along the critical line