Properties

Label 2-14976-1.1-c1-0-16
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s + 13-s − 2·17-s + 4·23-s − 25-s + 2·29-s − 2·31-s + 4·35-s + 6·37-s + 6·41-s − 2·43-s + 6·47-s − 3·49-s − 6·53-s − 8·59-s − 2·61-s − 2·65-s − 8·67-s − 2·71-s − 14·73-s − 4·79-s + 8·83-s + 4·85-s + 14·89-s − 2·91-s + 2·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s + 0.277·13-s − 0.485·17-s + 0.834·23-s − 1/5·25-s + 0.371·29-s − 0.359·31-s + 0.676·35-s + 0.986·37-s + 0.937·41-s − 0.304·43-s + 0.875·47-s − 3/7·49-s − 0.824·53-s − 1.04·59-s − 0.256·61-s − 0.248·65-s − 0.977·67-s − 0.237·71-s − 1.63·73-s − 0.450·79-s + 0.878·83-s + 0.433·85-s + 1.48·89-s − 0.209·91-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.11951978821979, −15.88360462340310, −15.30257868632695, −14.78621146290608, −14.13493529687967, −13.45981335121479, −12.87406697487388, −12.57627390958203, −11.63500031845346, −11.47377694653702, −10.65321086718577, −10.20614646114651, −9.272337755834083, −9.032938280047649, −8.236945547281039, −7.521492564671700, −7.205597636053604, −6.186620230023898, −6.014980129802505, −4.788613792331212, −4.409003557902065, −3.500358767581996, −3.079022974555756, −2.117096587545115, −0.9553458056022991, 0, 0.9553458056022991, 2.117096587545115, 3.079022974555756, 3.500358767581996, 4.409003557902065, 4.788613792331212, 6.014980129802505, 6.186620230023898, 7.205597636053604, 7.521492564671700, 8.236945547281039, 9.032938280047649, 9.272337755834083, 10.20614646114651, 10.65321086718577, 11.47377694653702, 11.63500031845346, 12.57627390958203, 12.87406697487388, 13.45981335121479, 14.13493529687967, 14.78621146290608, 15.30257868632695, 15.88360462340310, 16.11951978821979

Graph of the $Z$-function along the critical line