Properties

Label 2-149454-1.1-c1-0-50
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s − 2·7-s + 8-s + 4·10-s + 6·13-s − 2·14-s + 16-s + 7·17-s + 4·20-s + 23-s + 11·25-s + 6·26-s − 2·28-s + 5·29-s + 11·31-s + 32-s + 7·34-s − 8·35-s − 5·37-s + 4·40-s − 8·41-s − 43-s + 46-s − 2·47-s − 3·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.755·7-s + 0.353·8-s + 1.26·10-s + 1.66·13-s − 0.534·14-s + 1/4·16-s + 1.69·17-s + 0.894·20-s + 0.208·23-s + 11/5·25-s + 1.17·26-s − 0.377·28-s + 0.928·29-s + 1.97·31-s + 0.176·32-s + 1.20·34-s − 1.35·35-s − 0.821·37-s + 0.632·40-s − 1.24·41-s − 0.152·43-s + 0.147·46-s − 0.291·47-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.035328861\)
\(L(\frac12)\) \(\approx\) \(9.035328861\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 11 T + p T^{2} \) 1.31.al
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43241034778613, −13.13468529131861, −12.42545821073484, −12.07916251835199, −11.60510582553813, −10.78756439507442, −10.37801518497516, −10.08644661393687, −9.694047808165544, −9.053301059446149, −8.509012070900626, −8.127639546780507, −7.273794586201165, −6.620266425065131, −6.288885144659896, −6.052407752308420, −5.407035331878299, −5.054209800375199, −4.356739209645521, −3.485943978702186, −3.177938506452082, −2.710771197070920, −1.866530211369098, −1.314689906371026, −0.8419784763471912, 0.8419784763471912, 1.314689906371026, 1.866530211369098, 2.710771197070920, 3.177938506452082, 3.485943978702186, 4.356739209645521, 5.054209800375199, 5.407035331878299, 6.052407752308420, 6.288885144659896, 6.620266425065131, 7.273794586201165, 8.127639546780507, 8.509012070900626, 9.053301059446149, 9.694047808165544, 10.08644661393687, 10.37801518497516, 10.78756439507442, 11.60510582553813, 12.07916251835199, 12.42545821073484, 13.13468529131861, 13.43241034778613

Graph of the $Z$-function along the critical line