Properties

Label 2-148720-1.1-c1-0-40
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·9-s + 11-s + 17-s + 4·19-s − 2·23-s + 25-s − 6·29-s − 3·31-s + 8·37-s + 7·43-s − 3·45-s + 6·47-s − 7·49-s + 55-s − 15·59-s + 2·67-s − 5·73-s − 4·79-s + 9·81-s − 11·83-s + 85-s − 9·89-s + 4·95-s + 4·97-s − 3·99-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s − 9-s + 0.301·11-s + 0.242·17-s + 0.917·19-s − 0.417·23-s + 1/5·25-s − 1.11·29-s − 0.538·31-s + 1.31·37-s + 1.06·43-s − 0.447·45-s + 0.875·47-s − 49-s + 0.134·55-s − 1.95·59-s + 0.244·67-s − 0.585·73-s − 0.450·79-s + 81-s − 1.20·83-s + 0.108·85-s − 0.953·89-s + 0.410·95-s + 0.406·97-s − 0.301·99-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74698202481292, −13.02362155930399, −12.71749779968372, −12.15653168307980, −11.56384333417381, −11.27097051230533, −10.83884213782820, −10.17552903411163, −9.683949901182040, −9.194869789573289, −8.955654654903067, −8.234974094636916, −7.662878614239186, −7.411286683986231, −6.623826223954425, −6.054744452919025, −5.683111822687740, −5.339526014828797, −4.520830030338904, −4.061563940647401, −3.245054876493523, −2.945191813781788, −2.201636092188808, −1.587537782814966, −0.8460880755767096, 0, 0.8460880755767096, 1.587537782814966, 2.201636092188808, 2.945191813781788, 3.245054876493523, 4.061563940647401, 4.520830030338904, 5.339526014828797, 5.683111822687740, 6.054744452919025, 6.623826223954425, 7.411286683986231, 7.662878614239186, 8.234974094636916, 8.955654654903067, 9.194869789573289, 9.683949901182040, 10.17552903411163, 10.83884213782820, 11.27097051230533, 11.56384333417381, 12.15653168307980, 12.71749779968372, 13.02362155930399, 13.74698202481292

Graph of the $Z$-function along the critical line