Properties

Label 148720.bj
Number of curves $1$
Conductor $148720$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 148720.bj1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148720.bj do not have complex multiplication.

Modular form 148720.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} + q^{11} + q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 148720.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148720.bj1 148720br1 \([0, 0, 0, 13, -91]\) \(89856/1375\) \(-3718000\) \([]\) \(13824\) \(-0.058654\) \(\Gamma_0(N)\)-optimal