Properties

Label 2-1470-1.1-c1-0-14
Degree $2$
Conductor $1470$
Sign $1$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 5·11-s + 12-s + 5·13-s − 15-s + 16-s + 4·17-s + 18-s + 7·19-s − 20-s − 5·22-s + 23-s + 24-s + 25-s + 5·26-s + 27-s − 30-s + 2·31-s + 32-s − 5·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s + 1.38·13-s − 0.258·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 1.60·19-s − 0.223·20-s − 1.06·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s + 0.980·26-s + 0.192·27-s − 0.182·30-s + 0.359·31-s + 0.176·32-s − 0.870·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.140448834\)
\(L(\frac12)\) \(\approx\) \(3.140448834\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.508323806371389828324953011682, −8.539621431094665013880367620876, −7.71924310223513706020182982975, −7.34861349178235057500600410969, −6.00648948433407704005183559854, −5.36455321315892538076371080248, −4.34679056765626736481568259216, −3.33743508603807834710909805134, −2.79055015422136948803015148393, −1.22656281915761565453295784614, 1.22656281915761565453295784614, 2.79055015422136948803015148393, 3.33743508603807834710909805134, 4.34679056765626736481568259216, 5.36455321315892538076371080248, 6.00648948433407704005183559854, 7.34861349178235057500600410969, 7.71924310223513706020182982975, 8.539621431094665013880367620876, 9.508323806371389828324953011682

Graph of the $Z$-function along the critical line