Properties

Label 2-143650-1.1-c1-0-38
Degree $2$
Conductor $143650$
Sign $-1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·7-s + 8-s − 3·9-s + 3·11-s − 3·14-s + 16-s + 17-s − 3·18-s + 6·19-s + 3·22-s + 3·23-s − 3·28-s − 6·29-s + 10·31-s + 32-s + 34-s − 3·36-s + 4·37-s + 6·38-s + 4·41-s − 11·43-s + 3·44-s + 3·46-s − 12·47-s + 2·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.13·7-s + 0.353·8-s − 9-s + 0.904·11-s − 0.801·14-s + 1/4·16-s + 0.242·17-s − 0.707·18-s + 1.37·19-s + 0.639·22-s + 0.625·23-s − 0.566·28-s − 1.11·29-s + 1.79·31-s + 0.176·32-s + 0.171·34-s − 1/2·36-s + 0.657·37-s + 0.973·38-s + 0.624·41-s − 1.67·43-s + 0.452·44-s + 0.442·46-s − 1.75·47-s + 2/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49582985451830, −13.26011704001897, −12.76908804907430, −12.08628022787943, −11.82684089512804, −11.28292098152506, −11.09652440131715, −10.03171560724000, −9.886667246123755, −9.357885388645670, −8.873211406398587, −8.160359472211540, −7.807072131010511, −6.945474474681702, −6.741666746048597, −6.047640809516881, −5.867085029595981, −5.052819493146583, −4.725057562894724, −3.864884236706414, −3.278419679085419, −3.138709228358100, −2.479280085077428, −1.564769260080551, −0.9084019326805731, 0, 0.9084019326805731, 1.564769260080551, 2.479280085077428, 3.138709228358100, 3.278419679085419, 3.864884236706414, 4.725057562894724, 5.052819493146583, 5.867085029595981, 6.047640809516881, 6.741666746048597, 6.945474474681702, 7.807072131010511, 8.160359472211540, 8.873211406398587, 9.357885388645670, 9.886667246123755, 10.03171560724000, 11.09652440131715, 11.28292098152506, 11.82684089512804, 12.08628022787943, 12.76908804907430, 13.26011704001897, 13.49582985451830

Graph of the $Z$-function along the critical line