Properties

Label 2-142296-1.1-c1-0-46
Degree $2$
Conductor $142296$
Sign $-1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 2·13-s − 7·17-s + 2·19-s − 4·23-s − 5·25-s − 27-s + 8·29-s − 31-s − 2·37-s + 2·39-s + 9·41-s + 9·47-s + 7·51-s − 6·53-s − 2·57-s + 2·61-s + 8·67-s + 4·69-s − 3·71-s − 3·73-s + 5·75-s + 3·79-s + 81-s + 6·83-s − 8·87-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.554·13-s − 1.69·17-s + 0.458·19-s − 0.834·23-s − 25-s − 0.192·27-s + 1.48·29-s − 0.179·31-s − 0.328·37-s + 0.320·39-s + 1.40·41-s + 1.31·47-s + 0.980·51-s − 0.824·53-s − 0.264·57-s + 0.256·61-s + 0.977·67-s + 0.481·69-s − 0.356·71-s − 0.351·73-s + 0.577·75-s + 0.337·79-s + 1/9·81-s + 0.658·83-s − 0.857·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55924514110016, −13.22133459948451, −12.49017837340871, −12.24146196650364, −11.75911408335740, −11.15409664086226, −10.93091668681135, −10.19880952218783, −9.931694705729954, −9.256042312992353, −8.919106641133482, −8.199100533139898, −7.776640327249370, −7.177670626220363, −6.727180082017896, −6.170709822871603, −5.786754124503607, −5.097295392347310, −4.587710503392708, −4.152262353045627, −3.595587415498809, −2.612254507864268, −2.322098603860368, −1.546821240368716, −0.6989080903730516, 0, 0.6989080903730516, 1.546821240368716, 2.322098603860368, 2.612254507864268, 3.595587415498809, 4.152262353045627, 4.587710503392708, 5.097295392347310, 5.786754124503607, 6.170709822871603, 6.727180082017896, 7.177670626220363, 7.776640327249370, 8.199100533139898, 8.919106641133482, 9.256042312992353, 9.931694705729954, 10.19880952218783, 10.93091668681135, 11.15409664086226, 11.75911408335740, 12.24146196650364, 12.49017837340871, 13.22133459948451, 13.55924514110016

Graph of the $Z$-function along the critical line