Properties

Label 2-142296-1.1-c1-0-39
Degree $2$
Conductor $142296$
Sign $-1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 6·13-s − 2·15-s − 2·17-s − 8·19-s − 4·23-s − 25-s + 27-s − 2·29-s + 8·31-s + 6·37-s − 6·39-s − 2·41-s − 8·43-s − 2·45-s + 4·47-s − 2·51-s + 2·53-s − 8·57-s + 12·59-s + 10·61-s + 12·65-s − 12·67-s − 4·69-s − 12·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.66·13-s − 0.516·15-s − 0.485·17-s − 1.83·19-s − 0.834·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.986·37-s − 0.960·39-s − 0.312·41-s − 1.21·43-s − 0.298·45-s + 0.583·47-s − 0.280·51-s + 0.274·53-s − 1.05·57-s + 1.56·59-s + 1.28·61-s + 1.48·65-s − 1.46·67-s − 0.481·69-s − 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57431589138854, −13.15593300170273, −12.68843069977389, −12.12930792227636, −11.81874264590076, −11.38246536899960, −10.68834332473791, −10.09551246970778, −9.957318721414741, −9.235436561300314, −8.647604520987292, −8.289372179210355, −7.787955143599875, −7.439789028256273, −6.716383895243574, −6.458765746305795, −5.675120314898625, −4.912122621904276, −4.480579745380510, −4.061742161610010, −3.565313015387512, −2.661886532121407, −2.351970354408068, −1.791707254549638, −0.6351970302252066, 0, 0.6351970302252066, 1.791707254549638, 2.351970354408068, 2.661886532121407, 3.565313015387512, 4.061742161610010, 4.480579745380510, 4.912122621904276, 5.675120314898625, 6.458765746305795, 6.716383895243574, 7.439789028256273, 7.787955143599875, 8.289372179210355, 8.647604520987292, 9.235436561300314, 9.957318721414741, 10.09551246970778, 10.68834332473791, 11.38246536899960, 11.81874264590076, 12.12930792227636, 12.68843069977389, 13.15593300170273, 13.57431589138854

Graph of the $Z$-function along the critical line