Properties

Label 2-13650-1.1-c1-0-14
Degree $2$
Conductor $13650$
Sign $1$
Analytic cond. $108.995$
Root an. cond. $10.4401$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 7-s + 8-s + 9-s − 2·11-s − 12-s − 13-s + 14-s + 16-s − 2·17-s + 18-s + 4·19-s − 21-s − 2·22-s − 6·23-s − 24-s − 26-s − 27-s + 28-s + 2·29-s + 4·31-s + 32-s + 2·33-s − 2·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.917·19-s − 0.218·21-s − 0.426·22-s − 1.25·23-s − 0.204·24-s − 0.196·26-s − 0.192·27-s + 0.188·28-s + 0.371·29-s + 0.718·31-s + 0.176·32-s + 0.348·33-s − 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(108.995\)
Root analytic conductor: \(10.4401\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.556608965\)
\(L(\frac12)\) \(\approx\) \(2.556608965\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.99740022997874, −15.66824396379056, −15.18912602603950, −14.35864067271467, −13.93359513626105, −13.43887239473343, −12.76616529626928, −12.16991241747914, −11.76722560550604, −11.22178384097971, −10.52911480712792, −10.09492262204916, −9.424672394849067, −8.497049021147223, −7.890528050968022, −7.317371888344522, −6.623279580506116, −5.984506093775411, −5.349861316574540, −4.822296070834974, −4.191537428444411, −3.382317458320354, −2.506150412332396, −1.777353750466639, −0.6480964105955423, 0.6480964105955423, 1.777353750466639, 2.506150412332396, 3.382317458320354, 4.191537428444411, 4.822296070834974, 5.349861316574540, 5.984506093775411, 6.623279580506116, 7.317371888344522, 7.890528050968022, 8.497049021147223, 9.424672394849067, 10.09492262204916, 10.52911480712792, 11.22178384097971, 11.76722560550604, 12.16991241747914, 12.76616529626928, 13.43887239473343, 13.93359513626105, 14.35864067271467, 15.18912602603950, 15.66824396379056, 15.99740022997874

Graph of the $Z$-function along the critical line