Properties

Label 2-132800-1.1-c1-0-5
Degree $2$
Conductor $132800$
Sign $1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 3·9-s − 2·13-s − 2·19-s − 2·23-s + 2·29-s − 8·31-s − 6·37-s + 10·41-s + 4·43-s − 4·47-s − 3·49-s + 10·53-s + 8·59-s − 6·61-s − 6·63-s − 12·67-s − 8·71-s + 14·73-s − 4·79-s + 9·81-s + 83-s + 14·89-s − 4·91-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.755·7-s − 9-s − 0.554·13-s − 0.458·19-s − 0.417·23-s + 0.371·29-s − 1.43·31-s − 0.986·37-s + 1.56·41-s + 0.609·43-s − 0.583·47-s − 3/7·49-s + 1.37·53-s + 1.04·59-s − 0.768·61-s − 0.755·63-s − 1.46·67-s − 0.949·71-s + 1.63·73-s − 0.450·79-s + 81-s + 0.109·83-s + 1.48·89-s − 0.419·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.321271541\)
\(L(\frac12)\) \(\approx\) \(1.321271541\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52929736845044, −12.97405086670352, −12.40947173563694, −12.01494149685493, −11.54754181824173, −11.06020365079418, −10.63980669428323, −10.22363414557397, −9.444031693240228, −9.062818068023270, −8.604543038573588, −8.064514872702851, −7.635731945591595, −7.119970786563261, −6.513782369318780, −5.789048234615334, −5.576250285018828, −4.875040701381610, −4.432477485914040, −3.738944287260573, −3.185514502603372, −2.387262089527682, −2.080253531369984, −1.238315474219894, −0.3478747559815753, 0.3478747559815753, 1.238315474219894, 2.080253531369984, 2.387262089527682, 3.185514502603372, 3.738944287260573, 4.432477485914040, 4.875040701381610, 5.576250285018828, 5.789048234615334, 6.513782369318780, 7.119970786563261, 7.635731945591595, 8.064514872702851, 8.604543038573588, 9.062818068023270, 9.444031693240228, 10.22363414557397, 10.63980669428323, 11.06020365079418, 11.54754181824173, 12.01494149685493, 12.40947173563694, 12.97405086670352, 13.52929736845044

Graph of the $Z$-function along the critical line