Properties

Label 2-130050-1.1-c1-0-109
Degree $2$
Conductor $130050$
Sign $-1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 6·11-s − 13-s − 14-s + 16-s + 7·19-s − 6·22-s − 4·23-s − 26-s − 28-s − 4·29-s − 3·31-s + 32-s − 5·37-s + 7·38-s + 2·41-s + 5·43-s − 6·44-s − 4·46-s + 4·47-s − 6·49-s − 52-s + 2·53-s − 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 1.80·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.60·19-s − 1.27·22-s − 0.834·23-s − 0.196·26-s − 0.188·28-s − 0.742·29-s − 0.538·31-s + 0.176·32-s − 0.821·37-s + 1.13·38-s + 0.312·41-s + 0.762·43-s − 0.904·44-s − 0.589·46-s + 0.583·47-s − 6/7·49-s − 0.138·52-s + 0.274·53-s − 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.81936702474299, −13.17254108293177, −12.78249483516578, −12.45873868352219, −11.91475206958253, −11.28056539708398, −10.97624377626623, −10.34662246844320, −9.909845633903732, −9.542335835285392, −8.853541545588764, −8.161441905978156, −7.584225805664638, −7.497039828215151, −6.774591470755045, −6.127840150439247, −5.543620887785796, −5.214155106761094, −4.851604175736905, −3.885162157657854, −3.576348501642719, −2.857818196165529, −2.417109027391942, −1.810271334117579, −0.8117413209461932, 0, 0.8117413209461932, 1.810271334117579, 2.417109027391942, 2.857818196165529, 3.576348501642719, 3.885162157657854, 4.851604175736905, 5.214155106761094, 5.543620887785796, 6.127840150439247, 6.774591470755045, 7.497039828215151, 7.584225805664638, 8.161441905978156, 8.853541545588764, 9.542335835285392, 9.909845633903732, 10.34662246844320, 10.97624377626623, 11.28056539708398, 11.91475206958253, 12.45873868352219, 12.78249483516578, 13.17254108293177, 13.81936702474299

Graph of the $Z$-function along the critical line