Properties

Label 2-1288-1.1-c1-0-19
Degree $2$
Conductor $1288$
Sign $1$
Analytic cond. $10.2847$
Root an. cond. $3.20698$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·5-s − 7-s + 6·9-s + 2·11-s − 13-s + 6·15-s + 2·19-s − 3·21-s − 23-s − 25-s + 9·27-s − 3·29-s − 31-s + 6·33-s − 2·35-s − 2·37-s − 3·39-s − 41-s + 8·43-s + 12·45-s − 5·47-s + 49-s − 6·53-s + 4·55-s + 6·57-s + 6·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.894·5-s − 0.377·7-s + 2·9-s + 0.603·11-s − 0.277·13-s + 1.54·15-s + 0.458·19-s − 0.654·21-s − 0.208·23-s − 1/5·25-s + 1.73·27-s − 0.557·29-s − 0.179·31-s + 1.04·33-s − 0.338·35-s − 0.328·37-s − 0.480·39-s − 0.156·41-s + 1.21·43-s + 1.78·45-s − 0.729·47-s + 1/7·49-s − 0.824·53-s + 0.539·55-s + 0.794·57-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1288\)    =    \(2^{3} \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(10.2847\)
Root analytic conductor: \(3.20698\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.484992687\)
\(L(\frac12)\) \(\approx\) \(3.484992687\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
23 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.579281767076668646883614144046, −9.003560197720035813565931085517, −8.151484450294933667121087039727, −7.35717033014221846933977304477, −6.53048822074249301258004827687, −5.48645111741811701110312814163, −4.21230810906643869776513722821, −3.36833968235597921897432637920, −2.44863282120741202902662275901, −1.56670037343810394124028039892, 1.56670037343810394124028039892, 2.44863282120741202902662275901, 3.36833968235597921897432637920, 4.21230810906643869776513722821, 5.48645111741811701110312814163, 6.53048822074249301258004827687, 7.35717033014221846933977304477, 8.151484450294933667121087039727, 9.003560197720035813565931085517, 9.579281767076668646883614144046

Graph of the $Z$-function along the critical line