Properties

Label 2-1274-1.1-c1-0-18
Degree $2$
Conductor $1274$
Sign $-1$
Analytic cond. $10.1729$
Root an. cond. $3.18950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s + 3·6-s − 8-s + 6·9-s − 5·11-s − 3·12-s + 13-s + 16-s + 4·17-s − 6·18-s − 2·19-s + 5·22-s + 5·23-s + 3·24-s − 5·25-s − 26-s − 9·27-s + 4·29-s − 31-s − 32-s + 15·33-s − 4·34-s + 6·36-s + 7·37-s + 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.22·6-s − 0.353·8-s + 2·9-s − 1.50·11-s − 0.866·12-s + 0.277·13-s + 1/4·16-s + 0.970·17-s − 1.41·18-s − 0.458·19-s + 1.06·22-s + 1.04·23-s + 0.612·24-s − 25-s − 0.196·26-s − 1.73·27-s + 0.742·29-s − 0.179·31-s − 0.176·32-s + 2.61·33-s − 0.685·34-s + 36-s + 1.15·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1274\)    =    \(2 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(10.1729\)
Root analytic conductor: \(3.18950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1274,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.612162736352015844529352631345, −8.312051351400959597402385747456, −7.58448688447778853120023876132, −6.77348571516541885573598245021, −5.83826962229613740807236396926, −5.36198914955171371154112152465, −4.33501878167790135292580228215, −2.78400872191447728073145525196, −1.23571105217925524886590997058, 0, 1.23571105217925524886590997058, 2.78400872191447728073145525196, 4.33501878167790135292580228215, 5.36198914955171371154112152465, 5.83826962229613740807236396926, 6.77348571516541885573598245021, 7.58448688447778853120023876132, 8.312051351400959597402385747456, 9.612162736352015844529352631345

Graph of the $Z$-function along the critical line