Properties

Label 1274.a
Number of curves $1$
Conductor $1274$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1274.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1274.a do not have complex multiplication.

Modular form 1274.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + 3 q^{6} - q^{8} + 6 q^{9} - 5 q^{11} - 3 q^{12} + q^{13} + q^{16} + 4 q^{17} - 6 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1274.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1274.a1 1274g1 \([1, -1, 0, -1087, -301043]\) \(-1207949625/332678528\) \(-39139296140672\) \([]\) \(6720\) \(1.2874\) \(\Gamma_0(N)\)-optimal