Properties

Label 2-126126-1.1-c1-0-142
Degree $2$
Conductor $126126$
Sign $1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·5-s − 8-s + 4·10-s − 11-s + 13-s + 16-s − 17-s − 5·19-s − 4·20-s + 22-s + 5·23-s + 11·25-s − 26-s + 3·29-s − 32-s + 34-s + 5·37-s + 5·38-s + 4·40-s − 6·41-s − 9·43-s − 44-s − 5·46-s − 3·47-s − 11·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.353·8-s + 1.26·10-s − 0.301·11-s + 0.277·13-s + 1/4·16-s − 0.242·17-s − 1.14·19-s − 0.894·20-s + 0.213·22-s + 1.04·23-s + 11/5·25-s − 0.196·26-s + 0.557·29-s − 0.176·32-s + 0.171·34-s + 0.821·37-s + 0.811·38-s + 0.632·40-s − 0.937·41-s − 1.37·43-s − 0.150·44-s − 0.737·46-s − 0.437·47-s − 1.55·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12744830568520, −13.36579601412159, −12.86568159990667, −12.48121511512652, −11.96523125696978, −11.50692340488966, −10.96358713216450, −10.84538962571656, −10.23298511481113, −9.513251529532015, −9.036871870609495, −8.444087334265363, −8.129038423783744, −7.823607490496824, −7.150246430439250, −6.608242358087846, −6.404742290126892, −5.388878444174093, −4.773424179172722, −4.357645496721459, −3.747571799296394, −3.046119895717920, −2.788903127978959, −1.705121245131327, −1.109855389618476, 0, 0, 1.109855389618476, 1.705121245131327, 2.788903127978959, 3.046119895717920, 3.747571799296394, 4.357645496721459, 4.773424179172722, 5.388878444174093, 6.404742290126892, 6.608242358087846, 7.150246430439250, 7.823607490496824, 8.129038423783744, 8.444087334265363, 9.036871870609495, 9.513251529532015, 10.23298511481113, 10.84538962571656, 10.96358713216450, 11.50692340488966, 11.96523125696978, 12.48121511512652, 12.86568159990667, 13.36579601412159, 14.12744830568520

Graph of the $Z$-function along the critical line