Properties

Label 2-126126-1.1-c1-0-128
Degree $2$
Conductor $126126$
Sign $-1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 11-s − 13-s + 16-s + 8·17-s − 2·20-s + 22-s − 2·23-s − 25-s − 26-s + 6·29-s + 2·31-s + 32-s + 8·34-s + 10·37-s − 2·40-s − 2·41-s + 6·43-s + 44-s − 2·46-s − 8·47-s − 50-s − 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 0.301·11-s − 0.277·13-s + 1/4·16-s + 1.94·17-s − 0.447·20-s + 0.213·22-s − 0.417·23-s − 1/5·25-s − 0.196·26-s + 1.11·29-s + 0.359·31-s + 0.176·32-s + 1.37·34-s + 1.64·37-s − 0.316·40-s − 0.312·41-s + 0.914·43-s + 0.150·44-s − 0.294·46-s − 1.16·47-s − 0.141·50-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80940652127766, −13.25749787519327, −12.67087138129862, −12.30587018919451, −11.88825982614590, −11.50004184991610, −11.11318914826018, −10.32386014110005, −9.914545426394930, −9.613440289440527, −8.705003139735090, −8.202373003498610, −7.749964763053837, −7.446562078674682, −6.769859901988434, −6.191187248822924, −5.719299848370999, −5.185545816419254, −4.449422617554312, −4.179983655769020, −3.518769126514152, −2.989058025807291, −2.529938012858648, −1.480475829375751, −1.003394893067746, 0, 1.003394893067746, 1.480475829375751, 2.529938012858648, 2.989058025807291, 3.518769126514152, 4.179983655769020, 4.449422617554312, 5.185545816419254, 5.719299848370999, 6.191187248822924, 6.769859901988434, 7.446562078674682, 7.749964763053837, 8.202373003498610, 8.705003139735090, 9.613440289440527, 9.914545426394930, 10.32386014110005, 11.11318914826018, 11.50004184991610, 11.88825982614590, 12.30587018919451, 12.67087138129862, 13.25749787519327, 13.80940652127766

Graph of the $Z$-function along the critical line