Properties

Label 2-126126-1.1-c1-0-10
Degree $2$
Conductor $126126$
Sign $1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s + 11-s + 13-s + 16-s − 5·17-s + 8·19-s − 20-s − 22-s − 7·23-s − 4·25-s − 26-s + 2·29-s + 10·31-s − 32-s + 5·34-s − 10·37-s − 8·38-s + 40-s − 5·41-s − 10·43-s + 44-s + 7·46-s + 9·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s + 0.301·11-s + 0.277·13-s + 1/4·16-s − 1.21·17-s + 1.83·19-s − 0.223·20-s − 0.213·22-s − 1.45·23-s − 4/5·25-s − 0.196·26-s + 0.371·29-s + 1.79·31-s − 0.176·32-s + 0.857·34-s − 1.64·37-s − 1.29·38-s + 0.158·40-s − 0.780·41-s − 1.52·43-s + 0.150·44-s + 1.03·46-s + 1.31·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8841020620\)
\(L(\frac12)\) \(\approx\) \(0.8841020620\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52926656460123, −13.17539550539703, −12.23359349581530, −11.87503377583427, −11.65324991063634, −11.28209578281519, −10.29069238856922, −10.17664909541469, −9.787701418233086, −8.942950458854069, −8.631000744241233, −8.267206867615433, −7.504305356462339, −7.296148423022183, −6.568339155205505, −6.205212480983399, −5.531119950652633, −4.945695695201456, −4.267714651599205, −3.725125321388397, −3.171609297815288, −2.480486107022321, −1.792482442006870, −1.192218682142444, −0.3379747613977981, 0.3379747613977981, 1.192218682142444, 1.792482442006870, 2.480486107022321, 3.171609297815288, 3.725125321388397, 4.267714651599205, 4.945695695201456, 5.531119950652633, 6.205212480983399, 6.568339155205505, 7.296148423022183, 7.504305356462339, 8.267206867615433, 8.631000744241233, 8.942950458854069, 9.787701418233086, 10.17664909541469, 10.29069238856922, 11.28209578281519, 11.65324991063634, 11.87503377583427, 12.23359349581530, 13.17539550539703, 13.52926656460123

Graph of the $Z$-function along the critical line