Properties

Label 126126.bf
Number of curves $1$
Conductor $126126$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126126.bf1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126126.bf do not have complex multiplication.

Modular form 126126.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} + q^{13} + q^{16} - 5 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126126.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126126.bf1 126126y1 \([1, -1, 0, -36465, 55413917]\) \(-964467/237952\) \(-1323003679508294784\) \([]\) \(2483712\) \(2.1564\) \(\Gamma_0(N)\)-optimal