Properties

Label 2-126126-1.1-c1-0-1
Degree $2$
Conductor $126126$
Sign $1$
Analytic cond. $1007.12$
Root an. cond. $31.7351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 11-s + 13-s + 16-s + 4·17-s − 6·19-s − 20-s + 22-s − 3·23-s − 4·25-s − 26-s + 5·29-s − 4·31-s − 32-s − 4·34-s + 10·37-s + 6·38-s + 40-s − 7·41-s − 5·43-s − 44-s + 3·46-s − 8·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 0.277·13-s + 1/4·16-s + 0.970·17-s − 1.37·19-s − 0.223·20-s + 0.213·22-s − 0.625·23-s − 4/5·25-s − 0.196·26-s + 0.928·29-s − 0.718·31-s − 0.176·32-s − 0.685·34-s + 1.64·37-s + 0.973·38-s + 0.158·40-s − 1.09·41-s − 0.762·43-s − 0.150·44-s + 0.442·46-s − 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126126\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(1007.12\)
Root analytic conductor: \(31.7351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126126,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2761640258\)
\(L(\frac12)\) \(\approx\) \(0.2761640258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51885150388327, −12.96217440504157, −12.44593362826787, −11.96498896562590, −11.62797135310278, −10.96994456113448, −10.62787306585885, −10.05950773305995, −9.715035050045743, −9.120412139914579, −8.473228288343919, −8.131867958964326, −7.772553455453789, −7.237364980073914, −6.450827796618966, −6.243113089158621, −5.576350625029440, −4.925059744181248, −4.258131884705031, −3.778862186362597, −3.079070392840519, −2.553838192028614, −1.736150400021743, −1.270664108448216, −0.1809808702367491, 0.1809808702367491, 1.270664108448216, 1.736150400021743, 2.553838192028614, 3.079070392840519, 3.778862186362597, 4.258131884705031, 4.925059744181248, 5.576350625029440, 6.243113089158621, 6.450827796618966, 7.237364980073914, 7.772553455453789, 8.131867958964326, 8.473228288343919, 9.120412139914579, 9.715035050045743, 10.05950773305995, 10.62787306585885, 10.96994456113448, 11.62797135310278, 11.96498896562590, 12.44593362826787, 12.96217440504157, 13.51885150388327

Graph of the $Z$-function along the critical line