Properties

Label 2-124950-1.1-c1-0-141
Degree $2$
Conductor $124950$
Sign $-1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 2·11-s + 12-s − 13-s + 16-s + 17-s − 18-s − 4·19-s + 2·22-s − 24-s + 26-s + 27-s − 8·29-s + 8·31-s − 32-s − 2·33-s − 34-s + 36-s + 8·37-s + 4·38-s − 39-s − 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.603·11-s + 0.288·12-s − 0.277·13-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.917·19-s + 0.426·22-s − 0.204·24-s + 0.196·26-s + 0.192·27-s − 1.48·29-s + 1.43·31-s − 0.176·32-s − 0.348·33-s − 0.171·34-s + 1/6·36-s + 1.31·37-s + 0.648·38-s − 0.160·39-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58032712382297, −13.40969706318217, −12.80705004478857, −12.28899737837294, −11.84292740686432, −11.26031311376793, −10.66619037681307, −10.40477849089746, −9.736019852346449, −9.469347543084049, −8.791712416458760, −8.446633211250459, −7.841648712195058, −7.549556615778007, −7.005725754198461, −6.290465064860946, −5.964756226812439, −5.164306844352951, −4.643052297514633, −3.964366534177557, −3.402449084108405, −2.634783737582203, −2.324183066245309, −1.612570007872358, −0.8204313166003201, 0, 0.8204313166003201, 1.612570007872358, 2.324183066245309, 2.634783737582203, 3.402449084108405, 3.964366534177557, 4.643052297514633, 5.164306844352951, 5.964756226812439, 6.290465064860946, 7.005725754198461, 7.549556615778007, 7.841648712195058, 8.446633211250459, 8.791712416458760, 9.469347543084049, 9.736019852346449, 10.40477849089746, 10.66619037681307, 11.26031311376793, 11.84292740686432, 12.28899737837294, 12.80705004478857, 13.40969706318217, 13.58032712382297

Graph of the $Z$-function along the critical line