Properties

Label 2-121275-1.1-c1-0-119
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 11-s − 2·13-s − 16-s + 6·17-s + 4·19-s + 22-s + 8·23-s + 2·26-s − 6·29-s − 8·31-s − 5·32-s − 6·34-s − 6·37-s − 4·38-s − 6·41-s + 4·43-s + 44-s − 8·46-s + 8·47-s + 2·52-s − 10·53-s + 6·58-s − 12·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 0.301·11-s − 0.554·13-s − 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.213·22-s + 1.66·23-s + 0.392·26-s − 1.11·29-s − 1.43·31-s − 0.883·32-s − 1.02·34-s − 0.986·37-s − 0.648·38-s − 0.937·41-s + 0.609·43-s + 0.150·44-s − 1.17·46-s + 1.16·47-s + 0.277·52-s − 1.37·53-s + 0.787·58-s − 1.56·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.93599919771586, −13.19411209653544, −12.87687847143530, −12.39415639073395, −11.90674703794434, −11.18685963589435, −10.78491956541902, −10.38830439965085, −9.724077614788567, −9.358342693860807, −9.116611872702427, −8.407336013337233, −7.860073956379809, −7.379978639467404, −7.221732955244206, −6.399379152495483, −5.445179470768899, −5.261710249133261, −4.921953361289190, −3.929966207024007, −3.516258341730089, −2.963082354163855, −2.065297308809048, −1.398197217414900, −0.8038524817253572, 0, 0.8038524817253572, 1.398197217414900, 2.065297308809048, 2.963082354163855, 3.516258341730089, 3.929966207024007, 4.921953361289190, 5.261710249133261, 5.445179470768899, 6.399379152495483, 7.221732955244206, 7.379978639467404, 7.860073956379809, 8.407336013337233, 9.116611872702427, 9.358342693860807, 9.724077614788567, 10.38830439965085, 10.78491956541902, 11.18685963589435, 11.90674703794434, 12.39415639073395, 12.87687847143530, 13.19411209653544, 13.93599919771586

Graph of the $Z$-function along the critical line