Properties

Label 2-1184-1.1-c1-0-14
Degree $2$
Conductor $1184$
Sign $1$
Analytic cond. $9.45428$
Root an. cond. $3.07478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 4·5-s + 3·7-s + 6·9-s + 3·11-s + 6·13-s − 12·15-s − 4·17-s + 6·19-s − 9·21-s − 6·23-s + 11·25-s − 9·27-s − 4·29-s − 9·33-s + 12·35-s − 37-s − 18·39-s − 5·41-s − 6·43-s + 24·45-s − 9·47-s + 2·49-s + 12·51-s + 5·53-s + 12·55-s − 18·57-s + ⋯
L(s)  = 1  − 1.73·3-s + 1.78·5-s + 1.13·7-s + 2·9-s + 0.904·11-s + 1.66·13-s − 3.09·15-s − 0.970·17-s + 1.37·19-s − 1.96·21-s − 1.25·23-s + 11/5·25-s − 1.73·27-s − 0.742·29-s − 1.56·33-s + 2.02·35-s − 0.164·37-s − 2.88·39-s − 0.780·41-s − 0.914·43-s + 3.57·45-s − 1.31·47-s + 2/7·49-s + 1.68·51-s + 0.686·53-s + 1.61·55-s − 2.38·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1184\)    =    \(2^{5} \cdot 37\)
Sign: $1$
Analytic conductor: \(9.45428\)
Root analytic conductor: \(3.07478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.678346953\)
\(L(\frac12)\) \(\approx\) \(1.678346953\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.912789757820576242145457882489, −9.196930623939619111723766168561, −8.171116173413720852515064409422, −6.70215534378769498619674725507, −6.37130663081964170851026344460, −5.50386762915442186383450566417, −5.07368852733938728543400465493, −3.89119998683865980446546080420, −1.80714683000640168781195911291, −1.25838069591403157091036114514, 1.25838069591403157091036114514, 1.80714683000640168781195911291, 3.89119998683865980446546080420, 5.07368852733938728543400465493, 5.50386762915442186383450566417, 6.37130663081964170851026344460, 6.70215534378769498619674725507, 8.171116173413720852515064409422, 9.196930623939619111723766168561, 9.912789757820576242145457882489

Graph of the $Z$-function along the critical line