Properties

Label 2-116160-1.1-c1-0-14
Degree $2$
Conductor $116160$
Sign $1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 3·7-s + 9-s − 5·13-s + 15-s − 5·17-s + 19-s − 3·21-s − 4·23-s + 25-s − 27-s − 5·29-s + 2·31-s − 3·35-s − 3·37-s + 5·39-s − 2·41-s + 2·43-s − 45-s + 6·47-s + 2·49-s + 5·51-s − 57-s − 4·59-s + 8·61-s + 3·63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s − 1.38·13-s + 0.258·15-s − 1.21·17-s + 0.229·19-s − 0.654·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s − 0.928·29-s + 0.359·31-s − 0.507·35-s − 0.493·37-s + 0.800·39-s − 0.312·41-s + 0.304·43-s − 0.149·45-s + 0.875·47-s + 2/7·49-s + 0.700·51-s − 0.132·57-s − 0.520·59-s + 1.02·61-s + 0.377·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7905586262\)
\(L(\frac12)\) \(\approx\) \(0.7905586262\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66272816184232, −13.08395333642099, −12.39016569954091, −12.12368430758164, −11.71304941905169, −11.13634601843291, −10.84717328021619, −10.34223141565895, −9.603617332051079, −9.341461769468741, −8.537939011995914, −8.134484344638824, −7.601959644429112, −7.169211760014138, −6.684115703897888, −6.028631820623362, −5.271841122388252, −5.074757926936345, −4.363667411223507, −4.099502918340353, −3.265066602308833, −2.295724639095432, −2.076987600702136, −1.194861632124857, −0.2933671159111409, 0.2933671159111409, 1.194861632124857, 2.076987600702136, 2.295724639095432, 3.265066602308833, 4.099502918340353, 4.363667411223507, 5.074757926936345, 5.271841122388252, 6.028631820623362, 6.684115703897888, 7.169211760014138, 7.601959644429112, 8.134484344638824, 8.537939011995914, 9.341461769468741, 9.603617332051079, 10.34223141565895, 10.84717328021619, 11.13634601843291, 11.71304941905169, 12.12368430758164, 12.39016569954091, 13.08395333642099, 13.66272816184232

Graph of the $Z$-function along the critical line