Properties

Label 2-116160-1.1-c1-0-131
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 6·13-s − 15-s + 3·17-s − 3·23-s + 25-s + 27-s − 6·29-s − 7·31-s + 8·37-s − 6·39-s − 2·41-s + 10·43-s − 45-s + 3·47-s − 7·49-s + 3·51-s − 3·53-s + 2·59-s + 7·61-s + 6·65-s + 12·67-s − 3·69-s − 12·71-s − 4·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.66·13-s − 0.258·15-s + 0.727·17-s − 0.625·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 1.25·31-s + 1.31·37-s − 0.960·39-s − 0.312·41-s + 1.52·43-s − 0.149·45-s + 0.437·47-s − 49-s + 0.420·51-s − 0.412·53-s + 0.260·59-s + 0.896·61-s + 0.744·65-s + 1.46·67-s − 0.361·69-s − 1.42·71-s − 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20051858697425, −13.13255840478991, −12.88703323846050, −12.52250338188954, −11.92687695220894, −11.43204824748463, −11.04375957610048, −10.24646597698998, −9.892578425858630, −9.489556988030166, −8.961843424634702, −8.408370811164663, −7.739790299324206, −7.365903192469437, −7.285298902925435, −6.289364701994587, −5.779442799042002, −5.154969114576829, −4.639464640846024, −4.013306219274530, −3.552005003641930, −2.873669276901667, −2.296806169844113, −1.774158119658825, −0.7976008567857180, 0, 0.7976008567857180, 1.774158119658825, 2.296806169844113, 2.873669276901667, 3.552005003641930, 4.013306219274530, 4.639464640846024, 5.154969114576829, 5.779442799042002, 6.289364701994587, 7.285298902925435, 7.365903192469437, 7.739790299324206, 8.408370811164663, 8.961843424634702, 9.489556988030166, 9.892578425858630, 10.24646597698998, 11.04375957610048, 11.43204824748463, 11.92687695220894, 12.52250338188954, 12.88703323846050, 13.13255840478991, 14.20051858697425

Graph of the $Z$-function along the critical line