Properties

Label 2-11466-1.1-c1-0-49
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 11-s + 13-s + 16-s + 4·17-s − 4·19-s − 2·20-s − 22-s + 5·23-s − 25-s + 26-s − 6·29-s − 11·31-s + 32-s + 4·34-s + 7·37-s − 4·38-s − 2·40-s + 3·41-s + 2·43-s − 44-s + 5·46-s + 3·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 0.301·11-s + 0.277·13-s + 1/4·16-s + 0.970·17-s − 0.917·19-s − 0.447·20-s − 0.213·22-s + 1.04·23-s − 1/5·25-s + 0.196·26-s − 1.11·29-s − 1.97·31-s + 0.176·32-s + 0.685·34-s + 1.15·37-s − 0.648·38-s − 0.316·40-s + 0.468·41-s + 0.304·43-s − 0.150·44-s + 0.737·46-s + 0.437·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.67164811684774, −16.09784167511873, −15.48093875174896, −14.86518602105063, −14.69662509985105, −13.92319978032833, −13.02949476244209, −12.90207636622200, −12.22633722543358, −11.55439772683221, −11.01445166777504, −10.69061724167804, −9.749158121081690, −9.089864289315469, −8.381970792476990, −7.528541755142556, −7.441816557427568, −6.490846451045097, −5.686023264738040, −5.277481384340610, −4.258885983753305, −3.872277580247143, −3.148228541898551, −2.302018815819095, −1.265498616089948, 0, 1.265498616089948, 2.302018815819095, 3.148228541898551, 3.872277580247143, 4.258885983753305, 5.277481384340610, 5.686023264738040, 6.490846451045097, 7.441816557427568, 7.528541755142556, 8.381970792476990, 9.089864289315469, 9.749158121081690, 10.69061724167804, 11.01445166777504, 11.55439772683221, 12.22633722543358, 12.90207636622200, 13.02949476244209, 13.92319978032833, 14.69662509985105, 14.86518602105063, 15.48093875174896, 16.09784167511873, 16.67164811684774

Graph of the $Z$-function along the critical line