Properties

Label 2-11466-1.1-c1-0-41
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s + 8-s + 4·10-s + 11-s − 13-s + 16-s + 4·17-s − 2·19-s + 4·20-s + 22-s + 7·23-s + 11·25-s − 26-s + 8·29-s − 3·31-s + 32-s + 4·34-s + 7·37-s − 2·38-s + 4·40-s − 7·41-s − 8·43-s + 44-s + 7·46-s + 3·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.353·8-s + 1.26·10-s + 0.301·11-s − 0.277·13-s + 1/4·16-s + 0.970·17-s − 0.458·19-s + 0.894·20-s + 0.213·22-s + 1.45·23-s + 11/5·25-s − 0.196·26-s + 1.48·29-s − 0.538·31-s + 0.176·32-s + 0.685·34-s + 1.15·37-s − 0.324·38-s + 0.632·40-s − 1.09·41-s − 1.21·43-s + 0.150·44-s + 1.03·46-s + 0.437·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.804042472\)
\(L(\frac12)\) \(\approx\) \(5.804042472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.66249126863539, −15.84417314873675, −15.05064535328286, −14.53133046026651, −14.25217717387362, −13.53741329694257, −13.11050810249946, −12.65389791210876, −11.98475620428804, −11.26380357208508, −10.60606384180895, −9.935217257485904, −9.729686160837970, −8.803598414917878, −8.315311457660146, −7.153004963590537, −6.774992123362750, −6.086251519640410, −5.498314271952024, −5.011347869741459, −4.269398280875196, −3.112696404883249, −2.704614905767584, −1.747952535766771, −1.085286482799235, 1.085286482799235, 1.747952535766771, 2.704614905767584, 3.112696404883249, 4.269398280875196, 5.011347869741459, 5.498314271952024, 6.086251519640410, 6.774992123362750, 7.153004963590537, 8.315311457660146, 8.803598414917878, 9.729686160837970, 9.935217257485904, 10.60606384180895, 11.26380357208508, 11.98475620428804, 12.65389791210876, 13.11050810249946, 13.53741329694257, 14.25217717387362, 14.53133046026651, 15.05064535328286, 15.84417314873675, 16.66249126863539

Graph of the $Z$-function along the critical line