Properties

Label 2-11466-1.1-c1-0-30
Degree $2$
Conductor $11466$
Sign $-1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s − 8-s + 3·10-s + 11-s − 13-s + 16-s − 3·17-s − 19-s − 3·20-s − 22-s + 23-s + 4·25-s + 26-s − 5·29-s + 6·31-s − 32-s + 3·34-s − 37-s + 38-s + 3·40-s + 3·43-s + 44-s − 46-s + 4·47-s − 4·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.353·8-s + 0.948·10-s + 0.301·11-s − 0.277·13-s + 1/4·16-s − 0.727·17-s − 0.229·19-s − 0.670·20-s − 0.213·22-s + 0.208·23-s + 4/5·25-s + 0.196·26-s − 0.928·29-s + 1.07·31-s − 0.176·32-s + 0.514·34-s − 0.164·37-s + 0.162·38-s + 0.474·40-s + 0.457·43-s + 0.150·44-s − 0.147·46-s + 0.583·47-s − 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.78323698447264, −16.09399827482698, −15.65931675965976, −15.16315216057467, −14.73905758725540, −13.93073105056007, −13.24430492453363, −12.47434389344524, −12.06239645175693, −11.41003924024125, −11.06390823165249, −10.39374772377931, −9.664357117192378, −9.019148427151036, −8.459415819015386, −7.919575025727473, −7.289438460178257, −6.816442499655881, −6.055420826910087, −5.140588531693467, −4.290250899135209, −3.802783139034837, −2.901217875057725, −2.074961604189141, −0.9161435771988077, 0, 0.9161435771988077, 2.074961604189141, 2.901217875057725, 3.802783139034837, 4.290250899135209, 5.140588531693467, 6.055420826910087, 6.816442499655881, 7.289438460178257, 7.919575025727473, 8.459415819015386, 9.019148427151036, 9.664357117192378, 10.39374772377931, 11.06390823165249, 11.41003924024125, 12.06239645175693, 12.47434389344524, 13.24430492453363, 13.93073105056007, 14.73905758725540, 15.16315216057467, 15.65931675965976, 16.09399827482698, 16.78323698447264

Graph of the $Z$-function along the critical line