Properties

Label 2-11466-1.1-c1-0-19
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 8-s − 10-s − 11-s − 13-s + 16-s + 5·17-s + 19-s − 20-s − 22-s + 5·23-s − 4·25-s − 26-s + 3·29-s + 2·31-s + 32-s + 5·34-s − 11·37-s + 38-s − 40-s − 43-s − 44-s + 5·46-s + 12·47-s − 4·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 0.316·10-s − 0.301·11-s − 0.277·13-s + 1/4·16-s + 1.21·17-s + 0.229·19-s − 0.223·20-s − 0.213·22-s + 1.04·23-s − 4/5·25-s − 0.196·26-s + 0.557·29-s + 0.359·31-s + 0.176·32-s + 0.857·34-s − 1.80·37-s + 0.162·38-s − 0.158·40-s − 0.152·43-s − 0.150·44-s + 0.737·46-s + 1.75·47-s − 0.565·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.092812797\)
\(L(\frac12)\) \(\approx\) \(3.092812797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.26265789706071, −15.65975951043402, −15.45160075305888, −14.65773495494849, −14.13113858212283, −13.72651654913888, −12.93782531668437, −12.42488291229198, −11.95870025331733, −11.41248070777691, −10.72380477838025, −10.12847747392878, −9.582683881481982, −8.634519211259682, −8.129456812647844, −7.296586982907935, −7.048058049174671, −6.052690264780199, −5.424745404569252, −4.904040425372583, −4.078549114025484, −3.382655856197344, −2.794875318286483, −1.790649359047577, −0.7294417837706348, 0.7294417837706348, 1.790649359047577, 2.794875318286483, 3.382655856197344, 4.078549114025484, 4.904040425372583, 5.424745404569252, 6.052690264780199, 7.048058049174671, 7.296586982907935, 8.129456812647844, 8.634519211259682, 9.582683881481982, 10.12847747392878, 10.72380477838025, 11.41248070777691, 11.95870025331733, 12.42488291229198, 12.93782531668437, 13.72651654913888, 14.13113858212283, 14.65773495494849, 15.45160075305888, 15.65975951043402, 16.26265789706071

Graph of the $Z$-function along the critical line