Properties

Label 2-11466-1.1-c1-0-1
Degree $2$
Conductor $11466$
Sign $1$
Analytic cond. $91.5564$
Root an. cond. $9.56851$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 8-s + 2·10-s − 4·11-s + 13-s + 16-s − 2·17-s − 4·19-s − 2·20-s + 4·22-s − 4·23-s − 25-s − 26-s + 4·31-s − 32-s + 2·34-s + 4·37-s + 4·38-s + 2·40-s + 8·43-s − 4·44-s + 4·46-s + 6·47-s + 50-s + 52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.353·8-s + 0.632·10-s − 1.20·11-s + 0.277·13-s + 1/4·16-s − 0.485·17-s − 0.917·19-s − 0.447·20-s + 0.852·22-s − 0.834·23-s − 1/5·25-s − 0.196·26-s + 0.718·31-s − 0.176·32-s + 0.342·34-s + 0.657·37-s + 0.648·38-s + 0.316·40-s + 1.21·43-s − 0.603·44-s + 0.589·46-s + 0.875·47-s + 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11466\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(91.5564\)
Root analytic conductor: \(9.56851\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11466,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3966892327\)
\(L(\frac12)\) \(\approx\) \(0.3966892327\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.28821285003759, −15.92667639229676, −15.41583693154803, −15.06921589309269, −14.22111264032214, −13.53038440339133, −12.95280831745519, −12.29744173275515, −11.78781351775501, −11.14488576582273, −10.54799047392009, −10.25082504243663, −9.310749332187231, −8.733961492092074, −8.134109927877323, −7.622327741396790, −7.216941875941371, −6.066955202910740, −5.905286229982612, −4.538384497372288, −4.294958411394631, −3.158741013714261, −2.542741061864032, −1.599709997743728, −0.3157434039879697, 0.3157434039879697, 1.599709997743728, 2.542741061864032, 3.158741013714261, 4.294958411394631, 4.538384497372288, 5.905286229982612, 6.066955202910740, 7.216941875941371, 7.622327741396790, 8.134109927877323, 8.733961492092074, 9.310749332187231, 10.25082504243663, 10.54799047392009, 11.14488576582273, 11.78781351775501, 12.29744173275515, 12.95280831745519, 13.53038440339133, 14.22111264032214, 15.06921589309269, 15.41583693154803, 15.92667639229676, 16.28821285003759

Graph of the $Z$-function along the critical line