Properties

Label 2-11376-1.1-c1-0-9
Degree $2$
Conductor $11376$
Sign $1$
Analytic cond. $90.8378$
Root an. cond. $9.53088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 7-s − 3·11-s + 5·13-s − 17-s + 6·19-s − 5·23-s + 11·25-s + 7·29-s + 8·31-s − 4·35-s − 2·37-s + 6·41-s + 11·43-s − 6·49-s − 10·53-s − 12·55-s + 20·65-s − 2·67-s − 2·71-s − 9·73-s + 3·77-s − 79-s + 11·83-s − 4·85-s − 8·89-s − 5·91-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.377·7-s − 0.904·11-s + 1.38·13-s − 0.242·17-s + 1.37·19-s − 1.04·23-s + 11/5·25-s + 1.29·29-s + 1.43·31-s − 0.676·35-s − 0.328·37-s + 0.937·41-s + 1.67·43-s − 6/7·49-s − 1.37·53-s − 1.61·55-s + 2.48·65-s − 0.244·67-s − 0.237·71-s − 1.05·73-s + 0.341·77-s − 0.112·79-s + 1.20·83-s − 0.433·85-s − 0.847·89-s − 0.524·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11376\)    =    \(2^{4} \cdot 3^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(90.8378\)
Root analytic conductor: \(9.53088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.372190254\)
\(L(\frac12)\) \(\approx\) \(3.372190254\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
79 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 9 T + p T^{2} \) 1.73.j
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.13792426647031, −16.03554220196910, −15.60614834603428, −14.46729669560424, −13.95208737177392, −13.72712685972493, −13.14399247888860, −12.65159246340873, −11.89994574560174, −11.12343507824501, −10.39958490613207, −10.16730125305227, −9.442491133647078, −9.011601360004105, −8.200130980421928, −7.621313436683202, −6.503084435887328, −6.259627249033199, −5.648316807526751, −5.033839506159921, −4.181346856272349, −3.032252412983730, −2.656170767551901, −1.649908566810519, −0.8960359909749903, 0.8960359909749903, 1.649908566810519, 2.656170767551901, 3.032252412983730, 4.181346856272349, 5.033839506159921, 5.648316807526751, 6.259627249033199, 6.503084435887328, 7.621313436683202, 8.200130980421928, 9.011601360004105, 9.442491133647078, 10.16730125305227, 10.39958490613207, 11.12343507824501, 11.89994574560174, 12.65159246340873, 13.14399247888860, 13.72712685972493, 13.95208737177392, 14.46729669560424, 15.60614834603428, 16.03554220196910, 16.13792426647031

Graph of the $Z$-function along the critical line