sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11376, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0]))
pari:[g,chi] = znchar(Mod(1,11376))
\(\chi_{11376}(1,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1423,8533,8849,6481)\) → \((1,1,1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 11376 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)