Properties

Label 2-11376-1.1-c1-0-5
Degree $2$
Conductor $11376$
Sign $1$
Analytic cond. $90.8378$
Root an. cond. $9.53088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 7-s + 3·11-s + 5·13-s + 17-s + 6·19-s + 5·23-s + 11·25-s − 7·29-s + 8·31-s + 4·35-s − 2·37-s − 6·41-s + 11·43-s − 6·49-s + 10·53-s − 12·55-s − 20·65-s − 2·67-s + 2·71-s − 9·73-s − 3·77-s − 79-s − 11·83-s − 4·85-s + 8·89-s − 5·91-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.377·7-s + 0.904·11-s + 1.38·13-s + 0.242·17-s + 1.37·19-s + 1.04·23-s + 11/5·25-s − 1.29·29-s + 1.43·31-s + 0.676·35-s − 0.328·37-s − 0.937·41-s + 1.67·43-s − 6/7·49-s + 1.37·53-s − 1.61·55-s − 2.48·65-s − 0.244·67-s + 0.237·71-s − 1.05·73-s − 0.341·77-s − 0.112·79-s − 1.20·83-s − 0.433·85-s + 0.847·89-s − 0.524·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11376\)    =    \(2^{4} \cdot 3^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(90.8378\)
Root analytic conductor: \(9.53088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.701411358\)
\(L(\frac12)\) \(\approx\) \(1.701411358\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
79 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 9 T + p T^{2} \) 1.73.j
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.29991574811083, −15.84823758694019, −15.46654484138561, −14.86854243119378, −14.27263602310469, −13.53685436294613, −13.04054527967844, −12.22719017445922, −11.83367617163699, −11.31560853110246, −10.93572938640058, −10.07643594238692, −9.268597831173592, −8.743755436210137, −8.224422021336422, −7.431168161534105, −7.088509578627604, −6.313441029490057, −5.547863610926289, −4.652675050725748, −3.940805136695631, −3.482385133205065, −2.928488682404427, −1.341154212669863, −0.6866683823373107, 0.6866683823373107, 1.341154212669863, 2.928488682404427, 3.482385133205065, 3.940805136695631, 4.652675050725748, 5.547863610926289, 6.313441029490057, 7.088509578627604, 7.431168161534105, 8.224422021336422, 8.743755436210137, 9.268597831173592, 10.07643594238692, 10.93572938640058, 11.31560853110246, 11.83367617163699, 12.22719017445922, 13.04054527967844, 13.53685436294613, 14.27263602310469, 14.86854243119378, 15.46654484138561, 15.84823758694019, 16.29991574811083

Graph of the $Z$-function along the critical line