Properties

Label 2-11376-1.1-c1-0-14
Degree $2$
Conductor $11376$
Sign $-1$
Analytic cond. $90.8378$
Root an. cond. $9.53088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 11-s − 3·13-s − 3·17-s + 2·19-s − 23-s − 5·25-s − 3·29-s + 4·31-s − 2·37-s + 10·41-s + 5·43-s + 4·47-s − 6·49-s + 10·53-s − 4·61-s − 2·67-s − 6·71-s − 73-s + 77-s + 79-s − 9·83-s − 8·89-s − 3·91-s − 97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.377·7-s + 0.301·11-s − 0.832·13-s − 0.727·17-s + 0.458·19-s − 0.208·23-s − 25-s − 0.557·29-s + 0.718·31-s − 0.328·37-s + 1.56·41-s + 0.762·43-s + 0.583·47-s − 6/7·49-s + 1.37·53-s − 0.512·61-s − 0.244·67-s − 0.712·71-s − 0.117·73-s + 0.113·77-s + 0.112·79-s − 0.987·83-s − 0.847·89-s − 0.314·91-s − 0.101·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11376\)    =    \(2^{4} \cdot 3^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(90.8378\)
Root analytic conductor: \(9.53088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
79 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + T + p T^{2} \) 1.73.b
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.80649213184779, −16.11095005080694, −15.58522402487748, −15.05944901431157, −14.41185938350818, −13.97169116200688, −13.36708148946400, −12.70708010197468, −12.08301802149230, −11.58540314030454, −11.04460496541172, −10.32490423592195, −9.713682791145755, −9.161710661634346, −8.547571223463322, −7.686873462869366, −7.395948863917479, −6.546489465874500, −5.845739557421206, −5.220525144138526, −4.372551381462797, −3.939668461057333, −2.815966138848510, −2.190080862884812, −1.221347519730295, 0, 1.221347519730295, 2.190080862884812, 2.815966138848510, 3.939668461057333, 4.372551381462797, 5.220525144138526, 5.845739557421206, 6.546489465874500, 7.395948863917479, 7.686873462869366, 8.547571223463322, 9.161710661634346, 9.713682791145755, 10.32490423592195, 11.04460496541172, 11.58540314030454, 12.08301802149230, 12.70708010197468, 13.36708148946400, 13.97169116200688, 14.41185938350818, 15.05944901431157, 15.58522402487748, 16.11095005080694, 16.80649213184779

Graph of the $Z$-function along the critical line