| L(s)  = 1  |     − 2·3-s         + 7-s     + 9-s                 + 2·17-s     − 2·19-s     − 2·21-s     + 8·23-s         + 4·27-s     − 2·29-s     − 4·31-s             − 6·37-s         − 2·41-s     − 8·43-s         − 4·47-s     + 49-s     − 4·51-s     − 10·53-s         + 4·57-s     + 6·59-s     − 4·61-s     + 63-s         + 12·67-s     − 16·69-s         + 14·73-s             + 8·79-s     − 11·81-s     − 6·83-s  + ⋯ | 
 
| L(s)  = 1  |     − 1.15·3-s         + 0.377·7-s     + 1/3·9-s                 + 0.485·17-s     − 0.458·19-s     − 0.436·21-s     + 1.66·23-s         + 0.769·27-s     − 0.371·29-s     − 0.718·31-s             − 0.986·37-s         − 0.312·41-s     − 1.21·43-s         − 0.583·47-s     + 1/7·49-s     − 0.560·51-s     − 1.37·53-s         + 0.529·57-s     + 0.781·59-s     − 0.512·61-s     + 0.125·63-s         + 1.46·67-s     − 1.92·69-s         + 1.63·73-s             + 0.900·79-s     − 1.22·81-s     − 0.658·83-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
| good | 3 |  \( 1 + 2 T + p T^{2} \)  |  1.3.c  | 
 | 11 |  \( 1 + p T^{2} \)  |  1.11.a  | 
 | 13 |  \( 1 + p T^{2} \)  |  1.13.a  | 
 | 17 |  \( 1 - 2 T + p T^{2} \)  |  1.17.ac  | 
 | 19 |  \( 1 + 2 T + p T^{2} \)  |  1.19.c  | 
 | 23 |  \( 1 - 8 T + p T^{2} \)  |  1.23.ai  | 
 | 29 |  \( 1 + 2 T + p T^{2} \)  |  1.29.c  | 
 | 31 |  \( 1 + 4 T + p T^{2} \)  |  1.31.e  | 
 | 37 |  \( 1 + 6 T + p T^{2} \)  |  1.37.g  | 
 | 41 |  \( 1 + 2 T + p T^{2} \)  |  1.41.c  | 
 | 43 |  \( 1 + 8 T + p T^{2} \)  |  1.43.i  | 
 | 47 |  \( 1 + 4 T + p T^{2} \)  |  1.47.e  | 
 | 53 |  \( 1 + 10 T + p T^{2} \)  |  1.53.k  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 + 4 T + p T^{2} \)  |  1.61.e  | 
 | 67 |  \( 1 - 12 T + p T^{2} \)  |  1.67.am  | 
 | 71 |  \( 1 + p T^{2} \)  |  1.71.a  | 
 | 73 |  \( 1 - 14 T + p T^{2} \)  |  1.73.ao  | 
 | 79 |  \( 1 - 8 T + p T^{2} \)  |  1.79.ai  | 
 | 83 |  \( 1 + 6 T + p T^{2} \)  |  1.83.g  | 
 | 89 |  \( 1 - 10 T + p T^{2} \)  |  1.89.ak  | 
 | 97 |  \( 1 - 2 T + p T^{2} \)  |  1.97.ac  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−16.90475646469343, −16.33727193100600, −15.74534288394970, −14.96312058181721, −14.67077854397963, −13.88909169493861, −13.22408990065117, −12.58760964258088, −12.17667448176048, −11.43874508266689, −11.02744802369731, −10.63868525528126, −9.846690515690665, −9.195727315079806, −8.462614760937241, −7.893869628484495, −6.912684729951710, −6.671779996621094, −5.783272668131190, −5.090806433591382, −4.907627121159729, −3.772405011690071, −3.063283644422747, −1.941198953214486, −1.047577029267884, 0, 
1.047577029267884, 1.941198953214486, 3.063283644422747, 3.772405011690071, 4.907627121159729, 5.090806433591382, 5.783272668131190, 6.671779996621094, 6.912684729951710, 7.893869628484495, 8.462614760937241, 9.195727315079806, 9.846690515690665, 10.63868525528126, 11.02744802369731, 11.43874508266689, 12.17667448176048, 12.58760964258088, 13.22408990065117, 13.88909169493861, 14.67077854397963, 14.96312058181721, 15.74534288394970, 16.33727193100600, 16.90475646469343