Properties

Label 2-11200-1.1-c1-0-53
Degree $2$
Conductor $11200$
Sign $-1$
Analytic cond. $89.4324$
Root an. cond. $9.45687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 7-s + 9-s + 2·17-s − 2·19-s − 2·21-s + 8·23-s + 4·27-s − 2·29-s − 4·31-s − 6·37-s − 2·41-s − 8·43-s − 4·47-s + 49-s − 4·51-s − 10·53-s + 4·57-s + 6·59-s − 4·61-s + 63-s + 12·67-s − 16·69-s + 14·73-s + 8·79-s − 11·81-s − 6·83-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.377·7-s + 1/3·9-s + 0.485·17-s − 0.458·19-s − 0.436·21-s + 1.66·23-s + 0.769·27-s − 0.371·29-s − 0.718·31-s − 0.986·37-s − 0.312·41-s − 1.21·43-s − 0.583·47-s + 1/7·49-s − 0.560·51-s − 1.37·53-s + 0.529·57-s + 0.781·59-s − 0.512·61-s + 0.125·63-s + 1.46·67-s − 1.92·69-s + 1.63·73-s + 0.900·79-s − 1.22·81-s − 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11200\)    =    \(2^{6} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(89.4324\)
Root analytic conductor: \(9.45687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 11200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.90475646469343, −16.33727193100600, −15.74534288394970, −14.96312058181721, −14.67077854397963, −13.88909169493861, −13.22408990065117, −12.58760964258088, −12.17667448176048, −11.43874508266689, −11.02744802369731, −10.63868525528126, −9.846690515690665, −9.195727315079806, −8.462614760937241, −7.893869628484495, −6.912684729951710, −6.671779996621094, −5.783272668131190, −5.090806433591382, −4.907627121159729, −3.772405011690071, −3.063283644422747, −1.941198953214486, −1.047577029267884, 0, 1.047577029267884, 1.941198953214486, 3.063283644422747, 3.772405011690071, 4.907627121159729, 5.090806433591382, 5.783272668131190, 6.671779996621094, 6.912684729951710, 7.893869628484495, 8.462614760937241, 9.195727315079806, 9.846690515690665, 10.63868525528126, 11.02744802369731, 11.43874508266689, 12.17667448176048, 12.58760964258088, 13.22408990065117, 13.88909169493861, 14.67077854397963, 14.96312058181721, 15.74534288394970, 16.33727193100600, 16.90475646469343

Graph of the $Z$-function along the critical line