Properties

Label 2-10800-1.1-c1-0-4
Degree $2$
Conductor $10800$
Sign $1$
Analytic cond. $86.2384$
Root an. cond. $9.28646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 6·11-s − 6·13-s − 2·17-s − 7·19-s + 8·23-s + 6·29-s + 9·31-s − 3·37-s − 10·41-s − 43-s − 2·47-s − 6·49-s − 2·53-s − 12·59-s + 3·61-s − 4·67-s + 12·71-s + 11·73-s − 6·77-s + 11·79-s − 6·83-s − 8·89-s − 6·91-s + 7·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.80·11-s − 1.66·13-s − 0.485·17-s − 1.60·19-s + 1.66·23-s + 1.11·29-s + 1.61·31-s − 0.493·37-s − 1.56·41-s − 0.152·43-s − 0.291·47-s − 6/7·49-s − 0.274·53-s − 1.56·59-s + 0.384·61-s − 0.488·67-s + 1.42·71-s + 1.28·73-s − 0.683·77-s + 1.23·79-s − 0.658·83-s − 0.847·89-s − 0.628·91-s + 0.710·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10800\)    =    \(2^{4} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(86.2384\)
Root analytic conductor: \(9.28646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.018023890\)
\(L(\frac12)\) \(\approx\) \(1.018023890\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.70183651477926, −15.76086953753945, −15.25091677492862, −15.08585677658781, −14.26800539358931, −13.58760532769052, −13.09688080260559, −12.46450435217019, −12.11110582574428, −11.12519731827859, −10.73000393157755, −10.14406940960383, −9.645860034658084, −8.668649357299778, −8.219725930928004, −7.697085500327796, −6.828761137734445, −6.474150240541850, −5.236847954350409, −4.907350251067635, −4.478823175189329, −3.088388791320817, −2.616113581122247, −1.884739934608634, −0.4414512663399209, 0.4414512663399209, 1.884739934608634, 2.616113581122247, 3.088388791320817, 4.478823175189329, 4.907350251067635, 5.236847954350409, 6.474150240541850, 6.828761137734445, 7.697085500327796, 8.219725930928004, 8.668649357299778, 9.645860034658084, 10.14406940960383, 10.73000393157755, 11.12519731827859, 12.11110582574428, 12.46450435217019, 13.09688080260559, 13.58760532769052, 14.26800539358931, 15.08585677658781, 15.25091677492862, 15.76086953753945, 16.70183651477926

Graph of the $Z$-function along the critical line