Properties

Label 2-10710-1.1-c1-0-20
Degree $2$
Conductor $10710$
Sign $-1$
Analytic cond. $85.5197$
Root an. cond. $9.24769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s − 4·11-s + 4·13-s + 14-s + 16-s + 17-s + 20-s + 4·22-s + 2·23-s + 25-s − 4·26-s − 28-s + 2·29-s + 6·31-s − 32-s − 34-s − 35-s − 10·37-s − 40-s − 10·41-s − 4·44-s − 2·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s − 1.20·11-s + 1.10·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.223·20-s + 0.852·22-s + 0.417·23-s + 1/5·25-s − 0.784·26-s − 0.188·28-s + 0.371·29-s + 1.07·31-s − 0.176·32-s − 0.171·34-s − 0.169·35-s − 1.64·37-s − 0.158·40-s − 1.56·41-s − 0.603·44-s − 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(85.5197\)
Root analytic conductor: \(9.24769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10710,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.00401416453718, −16.11527849118891, −15.78102651698834, −15.46118932312356, −14.55252320760671, −13.91689032878118, −13.28882314066649, −12.94469275421688, −12.14197357375821, −11.52960982054790, −10.83717252158790, −10.19621335801680, −10.06309552384608, −9.090676471827634, −8.548414363974352, −8.104693138567405, −7.273431441629327, −6.643575942221869, −6.036232913945689, −5.347492806547032, −4.650152952118339, −3.437503496747223, −2.979391281450705, −2.012482661631330, −1.162636981249582, 0, 1.162636981249582, 2.012482661631330, 2.979391281450705, 3.437503496747223, 4.650152952118339, 5.347492806547032, 6.036232913945689, 6.643575942221869, 7.273431441629327, 8.104693138567405, 8.548414363974352, 9.090676471827634, 10.06309552384608, 10.19621335801680, 10.83717252158790, 11.52960982054790, 12.14197357375821, 12.94469275421688, 13.28882314066649, 13.91689032878118, 14.55252320760671, 15.46118932312356, 15.78102651698834, 16.11527849118891, 17.00401416453718

Graph of the $Z$-function along the critical line