Properties

Label 2-103488-1.1-c1-0-129
Degree $2$
Conductor $103488$
Sign $-1$
Analytic cond. $826.355$
Root an. cond. $28.7464$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 11-s + 2·13-s + 15-s − 3·17-s + 6·19-s − 5·23-s − 4·25-s − 27-s + 6·29-s − 4·31-s + 33-s + 2·37-s − 2·39-s + 3·41-s + 2·43-s − 45-s + 7·47-s + 3·51-s + 2·53-s + 55-s − 6·57-s − 8·59-s − 7·61-s − 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 0.258·15-s − 0.727·17-s + 1.37·19-s − 1.04·23-s − 4/5·25-s − 0.192·27-s + 1.11·29-s − 0.718·31-s + 0.174·33-s + 0.328·37-s − 0.320·39-s + 0.468·41-s + 0.304·43-s − 0.149·45-s + 1.02·47-s + 0.420·51-s + 0.274·53-s + 0.134·55-s − 0.794·57-s − 1.04·59-s − 0.896·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103488\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(826.355\)
Root analytic conductor: \(28.7464\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 103488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99057655542971, −13.52957409590408, −12.91818577976065, −12.39134954867641, −11.99439138492374, −11.55337585922759, −10.98710244665513, −10.75249877646945, −9.996972590913863, −9.611830513794850, −9.091144897038380, −8.383157733077394, −7.952145802025208, −7.473881381258904, −6.936746840689345, −6.326369505190371, −5.827847407965788, −5.358520200893621, −4.742619946685422, −4.057019028488575, −3.775406677686607, −2.924006124652111, −2.309216814637438, −1.494859673113324, −0.7867880579591988, 0, 0.7867880579591988, 1.494859673113324, 2.309216814637438, 2.924006124652111, 3.775406677686607, 4.057019028488575, 4.742619946685422, 5.358520200893621, 5.827847407965788, 6.326369505190371, 6.936746840689345, 7.473881381258904, 7.952145802025208, 8.383157733077394, 9.091144897038380, 9.611830513794850, 9.996972590913863, 10.75249877646945, 10.98710244665513, 11.55337585922759, 11.99439138492374, 12.39134954867641, 12.91818577976065, 13.52957409590408, 13.99057655542971

Graph of the $Z$-function along the critical line