Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
676.b.17576.1 676.b \( 2^{2} \cdot 13^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1244,1249,129167,2249728]$ $[311,3978,72332,1667692,17576]$ $[\frac{2909390022551}{17576},\frac{4602275343}{676},\frac{10349147}{26}]$ $y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$
2916.a.5832.1 2916.a \( 2^{2} \cdot 3^{6} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[4,369,1257,-3072]$ $[3,-138,-356,-5028,-5832]$ $[-\frac{1}{24},\frac{23}{36},\frac{89}{162}]$ $y^2 + (x^3 + 1)y = x^3$
2916.b.11664.1 2916.b \( 2^{2} \cdot 3^{6} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\mathsf{CM})\) $[40,45,555,6]$ $[120,330,-320,-36825,11664]$ $[\frac{6400000}{3},\frac{440000}{9},-\frac{32000}{81}]$ $y^2 + y = x^6$
4900.a.98000.1 4900.a \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\Q \times \Q\) $[1112,1549,528677,12250]$ $[1112,50490,3032000,205585975,98000]$ $[\frac{106268353943552}{6125},\frac{867820181184}{1225},\frac{1874600704}{49}]$ $y^2 + y = x^6 + 4x^4 + 4x^2 + 1$
26244.c.157464.1 26244.c \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[45,-270,3780,24300,157464]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + 1)y = 2x^3$
26244.d.314928.1 26244.d \( 2^{2} \cdot 3^{8} \) $1$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[24,189,1107,-162]$ $[72,-918,-3024,-265113,-314928]$ $[-6144,1088,\frac{448}{9}]$ $y^2 + y = x^6 - 2x^3$
26244.e.472392.1 26244.e \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[356,3969,419553,248832]$ $[267,1482,-2884,-741588,472392]$ $[\frac{5584059449}{1944},\frac{174127343}{2916},-\frac{5711041}{13122}]$ $y^2 + (x^3 + 1)y = 2$
52488.a.629856.1 52488.a \( 2^{3} \cdot 3^{8} \) $1$ $\Z/3\Z\oplus\Z/3\Z$ \(\Q \times \Q\) $[264,15984,2059452,10368]$ $[396,-17442,-3397248,-412383393,629856]$ $[15460896,-1719652,-\frac{7612352}{9}]$ $y^2 + (x^3 + x)y = x^4 - 7x^2 + 6$
  displayed columns for results