Properties

Label 2916.b
Conductor 29162916
Sato-Tate group D3,2D_{3,2}
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(C)\mathrm{M}_2(\C)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(CM)\mathrm{M}_2(\mathsf{CM})
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 2916.b

Label Equation
2916.b.11664.1 y2+y=x6y^2 + y = x^6

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
221+2T2 1 + 2 T^{2}
331 1
 
Good L-factors:
Prime L-Factor
55(1+5T2)2 ( 1 + 5 T^{2} )^{2}
77(15T+7T2)(1+T+7T2) ( 1 - 5 T + 7 T^{2} )( 1 + T + 7 T^{2} )
1111(1+11T2)2 ( 1 + 11 T^{2} )^{2}
1313(15T+13T2)(1+7T+13T2) ( 1 - 5 T + 13 T^{2} )( 1 + 7 T + 13 T^{2} )
1717(1+17T2)2 ( 1 + 17 T^{2} )^{2}
1919(1+T+19T2)(1+7T+19T2) ( 1 + T + 19 T^{2} )( 1 + 7 T + 19 T^{2} )
2323(1+23T2)2 ( 1 + 23 T^{2} )^{2}
2929(1+29T2)2 ( 1 + 29 T^{2} )^{2}
\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = D3,2D_{3,2}, ST0=U(1)\quad \mathrm{ST}^0 = \mathrm{U}(1)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 108.a
  Elliptic curve isogeny class 27.a

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq 6.0.34992.1 with defining polynomial x63x5+5x33x+1x^{6} - 3 x^{5} + 5 x^{3} - 3 x + 1

Endomorphism algebra over Q\overline{\Q}:

End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q(3)\Q(\sqrt{-3}) ))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(C)\mathrm{M}_2 (\C)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.