Properties

Label 1200.a
Conductor $1200$
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( 1 + T + 2 T^{2}\)
\(3\)\( ( 1 + T )( 1 + 3 T^{2} )\)
\(5\)\( ( 1 - T )^{2}\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( ( 1 - 4 T + 7 T^{2} )( 1 + 7 T^{2} )\) 2.7.ae_o
\(11\) \( ( 1 + 4 T + 11 T^{2} )^{2}\) 2.11.i_bm
\(13\) \( ( 1 + 2 T + 13 T^{2} )^{2}\) 2.13.e_be
\(17\) \( ( 1 - 2 T + 17 T^{2} )^{2}\) 2.17.ae_bm
\(19\) \( ( 1 - 4 T + 19 T^{2} )( 1 + 4 T + 19 T^{2} )\) 2.19.a_w
\(23\) \( ( 1 + 23 T^{2} )( 1 + 4 T + 23 T^{2} )\) 2.23.e_bu
\(29\) \( ( 1 + 2 T + 29 T^{2} )^{2}\) 2.29.e_ck
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 80.a
  Elliptic curve isogeny class 15.a

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.

Genus 2 curves in isogeny class 1200.a

Label Equation
1200.a.30000.1 \(y^2 + (x^3 + x)y = -2x^4 + x^2 + 3\)
1200.a.450000.1 \(y^2 + (x^3 + x)y = 4x^4 + 25x^2 + 45\)