Newspace parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.638803216170\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 40) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 0 | 0 | 1.00000 | 0 | 4.00000 | 0 | −3.00000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 80.2.a.a | 1 | |
3.b | odd | 2 | 1 | 720.2.a.e | 1 | ||
4.b | odd | 2 | 1 | 40.2.a.a | ✓ | 1 | |
5.b | even | 2 | 1 | 400.2.a.e | 1 | ||
5.c | odd | 4 | 2 | 400.2.c.d | 2 | ||
7.b | odd | 2 | 1 | 3920.2.a.s | 1 | ||
8.b | even | 2 | 1 | 320.2.a.d | 1 | ||
8.d | odd | 2 | 1 | 320.2.a.c | 1 | ||
11.b | odd | 2 | 1 | 9680.2.a.q | 1 | ||
12.b | even | 2 | 1 | 360.2.a.a | 1 | ||
15.d | odd | 2 | 1 | 3600.2.a.h | 1 | ||
15.e | even | 4 | 2 | 3600.2.f.t | 2 | ||
16.e | even | 4 | 2 | 1280.2.d.a | 2 | ||
16.f | odd | 4 | 2 | 1280.2.d.j | 2 | ||
20.d | odd | 2 | 1 | 200.2.a.c | 1 | ||
20.e | even | 4 | 2 | 200.2.c.b | 2 | ||
24.f | even | 2 | 1 | 2880.2.a.t | 1 | ||
24.h | odd | 2 | 1 | 2880.2.a.bg | 1 | ||
28.d | even | 2 | 1 | 1960.2.a.g | 1 | ||
28.f | even | 6 | 2 | 1960.2.q.i | 2 | ||
28.g | odd | 6 | 2 | 1960.2.q.h | 2 | ||
36.f | odd | 6 | 2 | 3240.2.q.k | 2 | ||
36.h | even | 6 | 2 | 3240.2.q.x | 2 | ||
40.e | odd | 2 | 1 | 1600.2.a.o | 1 | ||
40.f | even | 2 | 1 | 1600.2.a.k | 1 | ||
40.i | odd | 4 | 2 | 1600.2.c.m | 2 | ||
40.k | even | 4 | 2 | 1600.2.c.k | 2 | ||
44.c | even | 2 | 1 | 4840.2.a.f | 1 | ||
52.b | odd | 2 | 1 | 6760.2.a.i | 1 | ||
60.h | even | 2 | 1 | 1800.2.a.v | 1 | ||
60.l | odd | 4 | 2 | 1800.2.f.a | 2 | ||
140.c | even | 2 | 1 | 9800.2.a.x | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.2.a.a | ✓ | 1 | 4.b | odd | 2 | 1 | |
80.2.a.a | 1 | 1.a | even | 1 | 1 | trivial | |
200.2.a.c | 1 | 20.d | odd | 2 | 1 | ||
200.2.c.b | 2 | 20.e | even | 4 | 2 | ||
320.2.a.c | 1 | 8.d | odd | 2 | 1 | ||
320.2.a.d | 1 | 8.b | even | 2 | 1 | ||
360.2.a.a | 1 | 12.b | even | 2 | 1 | ||
400.2.a.e | 1 | 5.b | even | 2 | 1 | ||
400.2.c.d | 2 | 5.c | odd | 4 | 2 | ||
720.2.a.e | 1 | 3.b | odd | 2 | 1 | ||
1280.2.d.a | 2 | 16.e | even | 4 | 2 | ||
1280.2.d.j | 2 | 16.f | odd | 4 | 2 | ||
1600.2.a.k | 1 | 40.f | even | 2 | 1 | ||
1600.2.a.o | 1 | 40.e | odd | 2 | 1 | ||
1600.2.c.k | 2 | 40.k | even | 4 | 2 | ||
1600.2.c.m | 2 | 40.i | odd | 4 | 2 | ||
1800.2.a.v | 1 | 60.h | even | 2 | 1 | ||
1800.2.f.a | 2 | 60.l | odd | 4 | 2 | ||
1960.2.a.g | 1 | 28.d | even | 2 | 1 | ||
1960.2.q.h | 2 | 28.g | odd | 6 | 2 | ||
1960.2.q.i | 2 | 28.f | even | 6 | 2 | ||
2880.2.a.t | 1 | 24.f | even | 2 | 1 | ||
2880.2.a.bg | 1 | 24.h | odd | 2 | 1 | ||
3240.2.q.k | 2 | 36.f | odd | 6 | 2 | ||
3240.2.q.x | 2 | 36.h | even | 6 | 2 | ||
3600.2.a.h | 1 | 15.d | odd | 2 | 1 | ||
3600.2.f.t | 2 | 15.e | even | 4 | 2 | ||
3920.2.a.s | 1 | 7.b | odd | 2 | 1 | ||
4840.2.a.f | 1 | 44.c | even | 2 | 1 | ||
6760.2.a.i | 1 | 52.b | odd | 2 | 1 | ||
9680.2.a.q | 1 | 11.b | odd | 2 | 1 | ||
9800.2.a.x | 1 | 140.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(80))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T \)
$5$
\( T - 1 \)
$7$
\( T - 4 \)
$11$
\( T + 4 \)
$13$
\( T + 2 \)
$17$
\( T - 2 \)
$19$
\( T + 4 \)
$23$
\( T + 4 \)
$29$
\( T + 2 \)
$31$
\( T - 8 \)
$37$
\( T - 6 \)
$41$
\( T + 6 \)
$43$
\( T - 8 \)
$47$
\( T + 4 \)
$53$
\( T - 6 \)
$59$
\( T - 4 \)
$61$
\( T + 2 \)
$67$
\( T + 8 \)
$71$
\( T \)
$73$
\( T + 6 \)
$79$
\( T \)
$83$
\( T - 16 \)
$89$
\( T + 6 \)
$97$
\( T + 14 \)
show more
show less