Learn more

Refine search


Results (1-50 of 359 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
303450.a1 303450.a \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -101300, -13172400]$ \(y^2+xy=x^3+x^2-101300x-13172400\) 3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 2856.16.0.? $[ ]$
303450.a2 303450.a \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 7075, -15675]$ \(y^2+xy=x^3+x^2+7075x-15675\) 3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 2856.16.0.? $[ ]$
303450.b1 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $22.79040970$ $[1, 1, 0, -12590140650, -543747958852500]$ \(y^2+xy=x^3+x^2-12590140650x-543747958852500\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 40.48.0-8.bb.1.6, 48.48.0-8.bb.1.7, $\ldots$ $[(-963954465141/3857, 420203344950003/3857)]$
303450.b2 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.848801213$ $[1, 1, 0, -1825179650, 30007268392500]$ \(y^2+xy=x^3+x^2-1825179650x+30007268392500\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 48.48.0-8.bb.2.7, 60.12.0.h.1, $\ldots$ $[(24940, 16430)]$
303450.b3 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.39520485$ $[1, 1, 0, -794027650, -8334185895500]$ \(y^2+xy=x^3+x^2-794027650x-8334185895500\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0-8.e.2.10, 40.48.0-8.e.2.14, $\ldots$ $[(36469705/9, 219635468515/9)]$
303450.b4 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.697602427$ $[1, 1, 0, -125859650, 366029632500]$ \(y^2+xy=x^3+x^2-125859650x+366029632500\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 24.48.0-8.e.1.13, 40.48.0-8.e.1.4, $\ldots$ $[(-11725, 485450)]$
303450.b5 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.848801213$ $[1, 1, 0, 22108350, 38872384500]$ \(y^2+xy=x^3+x^2+22108350x+38872384500\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.2, 24.24.0-8.n.1.8, $\ldots$ $[(5305, 550060)]$
303450.b6 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $22.79040970$ $[1, 1, 0, 311397350, -29720843370500]$ \(y^2+xy=x^3+x^2+311397350x-29720843370500\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 24.24.0-8.n.1.7, $\ldots$ $[(644430005305/1197, 517253806428614695/1197)]$
303450.c1 303450.c \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -433650, -110103000]$ \(y^2+xy=x^3+x^2-433650x-110103000\) 3.4.0.a.1, 15.8.0-3.a.1.1, 84.8.0.?, 420.16.0.? $[ ]$
303450.c2 303450.c \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -150, -427500]$ \(y^2+xy=x^3+x^2-150x-427500\) 3.4.0.a.1, 15.8.0-3.a.1.2, 84.8.0.?, 420.16.0.? $[ ]$
303450.d1 303450.d \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $11.85516063$ $[1, 1, 0, 2044525, 1350250125]$ \(y^2+xy=x^3+x^2+2044525x+1350250125\) 24.2.0.b.1 $[(235291/11, 148605016/11)]$
303450.e1 303450.e \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 35452925, 281312642125]$ \(y^2+xy=x^3+x^2+35452925x+281312642125\) 14.2.0.a.1 $[ ]$
303450.f1 303450.f \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.059916362$ $[1, 1, 0, -117875, -26647875]$ \(y^2+xy=x^3+x^2-117875x-26647875\) 420.2.0.? $[(745, 16940)]$
303450.g1 303450.g \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $29.69614147$ $[1, 1, 0, -15924050, -25070599500]$ \(y^2+xy=x^3+x^2-15924050x-25070599500\) 2856.2.0.? $[(3359105666037241/740089, 131960079764258809579692/740089)]$
303450.h1 303450.h \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5202150, 5007364500]$ \(y^2+xy=x^3+x^2-5202150x+5007364500\) 420.2.0.? $[ ]$
303450.i1 303450.i \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z$ $5.976843360$ $[1, 1, 0, -591325, -12537875]$ \(y^2+xy=x^3+x^2-591325x-12537875\) 2.3.0.a.1, 84.6.0.?, 170.6.0.?, 7140.12.0.? $[(-65, 5095), (1310, 37595)]$
303450.i2 303450.i \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z$ $23.90737344$ $[1, 1, 0, -421325, -105187875]$ \(y^2+xy=x^3+x^2-421325x-105187875\) 2.3.0.a.1, 84.6.0.?, 340.6.0.?, 3570.6.0.?, 7140.12.0.? $[(-381, 651), (906, 15603)]$
303450.j1 303450.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.426376769$ $[1, 1, 0, -68320, 6845440]$ \(y^2+xy=x^3+x^2-68320x+6845440\) 5.6.0.a.1, 85.24.0.?, 420.12.0.?, 1428.2.0.?, 7140.48.1.? $[(1216/3, 6880/3)]$
303450.j2 303450.j \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.131883845$ $[1, 1, 0, 362800, 13674000]$ \(y^2+xy=x^3+x^2+362800x+13674000\) 5.6.0.a.1, 85.24.0.?, 420.12.0.?, 1428.2.0.?, 7140.48.1.? $[(6724/3, 705512/3)]$
303450.k1 303450.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.876128388$ $[1, 1, 0, -36695925, 85545487125]$ \(y^2+xy=x^3+x^2-36695925x+85545487125\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 140.12.0.?, 280.24.0.?, $\ldots$ $[(56169, 13209705)]$
303450.k2 303450.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.876128388$ $[1, 1, 0, -4905925, -2212830875]$ \(y^2+xy=x^3+x^2-4905925x-2212830875\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 280.24.0.?, 340.12.0.?, $\ldots$ $[(-1831, 26126)]$
303450.k3 303450.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.938064194$ $[1, 1, 0, -2304925, 1321928125]$ \(y^2+xy=x^3+x^2-2304925x+1321928125\) 2.6.0.a.1, 8.12.0.a.1, 140.12.0.?, 280.24.0.?, 340.12.0.?, $\ldots$ $[(770, 1715)]$
303450.k4 303450.k \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.469032097$ $[1, 1, 0, 7075, 61888125]$ \(y^2+xy=x^3+x^2+7075x+61888125\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 140.12.0.?, 238.6.0.?, $\ldots$ $[(375, 10650)]$
303450.l1 303450.l \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 7444134100, -22211824285500]$ \(y^2+xy=x^3+x^2+7444134100x-22211824285500\) 420.2.0.? $[ ]$
303450.m1 303450.m \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.052804035$ $[1, 1, 0, -2275, 46375]$ \(y^2+xy=x^3+x^2-2275x+46375\) 840.2.0.? $[(5, 185)]$
303450.n1 303450.n \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6433290, 2737905300]$ \(y^2+xy=x^3+x^2-6433290x+2737905300\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? $[ ]$
303450.n2 303450.n \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1427510, 324639700]$ \(y^2+xy=x^3+x^2+1427510x+324639700\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? $[ ]$
303450.o1 303450.o \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $6.117314930$ $[1, 1, 0, -13155, -1714995]$ \(y^2+xy=x^3+x^2-13155x-1714995\) 1428.2.0.? $[(19694/5, 2682393/5)]$
303450.p1 303450.p \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3274066700, -72122050446000]$ \(y^2+xy=x^3+x^2-3274066700x-72122050446000\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 51.8.0-3.a.1.1, 714.16.0.? $[ ]$
303450.p2 303450.p \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 14572675, -340918807875]$ \(y^2+xy=x^3+x^2+14572675x-340918807875\) 3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 51.8.0-3.a.1.2, 714.16.0.? $[ ]$
303450.q1 303450.q \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $2$ $\mathsf{trivial}$ $0.482842053$ $[1, 1, 0, -150, 900]$ \(y^2+xy=x^3+x^2-150x+900\) 14.2.0.a.1 $[(0, 30), (20, 70)]$
303450.r1 303450.r \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.484573847$ $[1, 1, 0, -2275, -42875]$ \(y^2+xy=x^3+x^2-2275x-42875\) 24.2.0.b.1 $[(4011/5, 232169/5)]$
303450.s1 303450.s \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1466825, -1765747875]$ \(y^2+xy=x^3+x^2-1466825x-1765747875\) 3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 952.2.0.?, 2856.16.0.? $[ ]$
303450.s2 303450.s \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 158800, 56577750]$ \(y^2+xy=x^3+x^2+158800x+56577750\) 3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 952.2.0.?, 2856.16.0.? $[ ]$
303450.t1 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.623093496$ $[1, 1, 0, -9710550, 11642949000]$ \(y^2+xy=x^3+x^2-9710550x+11642949000\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.z.2, 28.12.0.h.1, $\ldots$ $[(1805, -440)]$
303450.t2 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.246186993$ $[1, 1, 0, -6603800, -6471932250]$ \(y^2+xy=x^3+x^2-6603800x-6471932250\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 112.96.1.?, 340.12.0.?, $\ldots$ $[(14655, 1737510)]$
303450.t3 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.623093496$ $[1, 1, 0, -751550, 88440000]$ \(y^2+xy=x^3+x^2-751550x+88440000\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 56.96.1.bp.2, 340.24.0.?, $\ldots$ $[(71, 5918)]$
303450.t4 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.311546748$ $[1, 1, 0, -607050, 181642500]$ \(y^2+xy=x^3+x^2-607050x+181642500\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 28.24.0.c.1, 56.96.1.by.1, $\ldots$ $[(171, 9018)]$
303450.t5 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.623093496$ $[1, 1, 0, -29050, 4196500]$ \(y^2+xy=x^3+x^2-29050x+4196500\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 14.6.0.b.1, 16.48.0.z.1, $\ldots$ $[(69, 1555)]$
303450.t6 303450.t \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.246186993$ $[1, 1, 0, 2788700, 686742250]$ \(y^2+xy=x^3+x^2+2788700x+686742250\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 56.48.0.bc.1, $\ldots$ $[(14521, 1754368)]$
303450.u1 303450.u \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $8.091408624$ $[1, 1, 0, -903275, -200292675]$ \(y^2+xy=x^3+x^2-903275x-200292675\) 12.2.0.a.1 $[(-7106/3, 135751/3)]$
303450.v1 303450.v \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -362845, 83973505]$ \(y^2+xy=x^3+x^2-362845x+83973505\) 12.2.0.a.1 $[ ]$
303450.w1 303450.w \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 496930, 299433120]$ \(y^2+xy=x^3+x^2+496930x+299433120\) 14.2.0.a.1 $[ ]$
303450.x1 303450.x \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -8294450, -54402943500]$ \(y^2+xy=x^3+x^2-8294450x-54402943500\) 3.4.0.a.1, 51.8.0-3.a.1.1, 84.8.0.?, 1428.16.0.? $[ ]$
303450.x2 303450.x \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 917425, 1964519625]$ \(y^2+xy=x^3+x^2+917425x+1964519625\) 3.4.0.a.1, 51.8.0-3.a.1.2, 84.8.0.?, 1428.16.0.? $[ ]$
303450.y1 303450.y \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 45325, 1606125]$ \(y^2+xy=x^3+x^2+45325x+1606125\) 24.2.0.b.1 $[ ]$
303450.z1 303450.z \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -9648415, 12238047685]$ \(y^2+xy=x^3+x^2-9648415x+12238047685\) 14.2.0.a.1 $[ ]$
303450.ba1 303450.ba \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.483294676$ $[1, 1, 0, -55825, 5057125]$ \(y^2+xy=x^3+x^2-55825x+5057125\) 420.2.0.? $[(135, -5)]$
303450.bb1 303450.bb \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z$ $51.99753367$ $[1, 1, 0, -121380150, -514768889250]$ \(y^2+xy=x^3+x^2-121380150x-514768889250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 56.24.0.bh.1, $\ldots$ $[(25501, 3589201), (13945, 703390)]$
303450.bb2 303450.bb \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $12.99938341$ $[1, 1, 0, -7586400, -8045320500]$ \(y^2+xy=x^3+x^2-7586400x-8045320500\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 56.48.0.n.1, 120.48.0.?, $\ldots$ $[(4251, 189048), (6070, 408790)]$
Next   displayed columns for results