Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
303450.a1 |
303450a2 |
303450.a |
303450a |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{9} \cdot 3 \cdot 5^{4} \cdot 7^{3} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3265920$ |
$1.801924$ |
$-7620530425/526848$ |
$0.98174$ |
$3.66823$ |
$[1, 1, 0, -101300, -13172400]$ |
\(y^2+xy=x^3+x^2-101300x-13172400\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 2856.16.0.? |
$[ ]$ |
303450.a2 |
303450a1 |
303450.a |
303450a |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 7 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1088640$ |
$1.252619$ |
$2595575/1512$ |
$1.04999$ |
$3.02673$ |
$[1, 1, 0, 7075, -15675]$ |
\(y^2+xy=x^3+x^2+7075x-15675\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 2856.16.0.? |
$[ ]$ |
303450.b1 |
303450b6 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 5^{14} \cdot 7^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$4080$ |
$192$ |
$1$ |
$22.79040970$ |
$1$ |
|
$0$ |
$509607936$ |
$4.355988$ |
$585196747116290735872321/836876053125000$ |
$1.01749$ |
$6.44715$ |
$[1, 1, 0, -12590140650, -543747958852500]$ |
\(y^2+xy=x^3+x^2-12590140650x-543747958852500\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 40.48.0-8.bb.1.6, 48.48.0-8.bb.1.7, $\ldots$ |
$[(-963954465141/3857, 420203344950003/3857)]$ |
303450.b2 |
303450b3 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3 \cdot 5^{7} \cdot 7^{2} \cdot 17^{14} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.90 |
2B |
$4080$ |
$192$ |
$1$ |
$2.848801213$ |
$1$ |
|
$6$ |
$254803968$ |
$4.009415$ |
$1782900110862842086081/328139630024640$ |
$0.99949$ |
$5.98816$ |
$[1, 1, 0, -1825179650, 30007268392500]$ |
\(y^2+xy=x^3+x^2-1825179650x+30007268392500\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 48.48.0-8.bb.2.7, 60.12.0.h.1, $\ldots$ |
$[(24940, 16430)]$ |
303450.b3 |
303450b4 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{10} \cdot 7^{8} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.10 |
2Cs |
$2040$ |
$192$ |
$1$ |
$11.39520485$ |
$1$ |
|
$2$ |
$254803968$ |
$4.009415$ |
$146796951366228945601/5397929064360000$ |
$0.99129$ |
$5.79035$ |
$[1, 1, 0, -794027650, -8334185895500]$ |
\(y^2+xy=x^3+x^2-794027650x-8334185895500\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0-8.e.2.10, 40.48.0-8.e.2.14, $\ldots$ |
$[(36469705/9, 219635468515/9)]$ |
303450.b4 |
303450b2 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{8} \cdot 7^{4} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.18 |
2Cs |
$2040$ |
$192$ |
$1$ |
$5.697602427$ |
$1$ |
|
$6$ |
$127401984$ |
$3.662838$ |
$584614687782041281/184812061593600$ |
$0.97691$ |
$5.35259$ |
$[1, 1, 0, -125859650, 366029632500]$ |
\(y^2+xy=x^3+x^2-125859650x+366029632500\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 24.48.0-8.e.1.13, 40.48.0-8.e.1.4, $\ldots$ |
$[(-11725, 485450)]$ |
303450.b5 |
303450b1 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{24} \cdot 3 \cdot 5^{7} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.13 |
2B |
$4080$ |
$192$ |
$1$ |
$2.848801213$ |
$1$ |
|
$3$ |
$63700992$ |
$3.316265$ |
$3168685387909439/3563732336640$ |
$0.95941$ |
$4.93925$ |
$[1, 1, 0, 22108350, 38872384500]$ |
\(y^2+xy=x^3+x^2+22108350x+38872384500\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.2, 24.24.0-8.n.1.8, $\ldots$ |
$[(5305, 550060)]$ |
303450.b6 |
303450b5 |
303450.b |
303450b |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 7^{16} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.1 |
2B |
$4080$ |
$192$ |
$1$ |
$22.79040970$ |
$1$ |
|
$0$ |
$509607936$ |
$4.355988$ |
$8854313460877886399/1016927675429790600$ |
$1.03685$ |
$5.98662$ |
$[1, 1, 0, 311397350, -29720843370500]$ |
\(y^2+xy=x^3+x^2+311397350x-29720843370500\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 24.24.0-8.n.1.7, $\ldots$ |
$[(644430005305/1197, 517253806428614695/1197)]$ |
303450.c1 |
303450c2 |
303450.c |
303450c |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3 \cdot 5^{9} \cdot 7^{3} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$1.894821$ |
$-6910788750049/514500$ |
$0.95589$ |
$4.00490$ |
$[1, 1, 0, -433650, -110103000]$ |
\(y^2+xy=x^3+x^2-433650x-110103000\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 84.8.0.?, 420.16.0.? |
$[ ]$ |
303450.c2 |
303450c1 |
303450.c |
303450c |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 7 \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$420$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.345516$ |
$-289/60480$ |
$1.06042$ |
$3.12559$ |
$[1, 1, 0, -150, -427500]$ |
\(y^2+xy=x^3+x^2-150x-427500\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 84.8.0.?, 420.16.0.? |
$[ ]$ |
303450.d1 |
303450d1 |
303450.d |
303450d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \cdot 17^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$11.85516063$ |
$1$ |
|
$0$ |
$15863040$ |
$2.739120$ |
$30004847/42336$ |
$0.94258$ |
$4.40221$ |
$[1, 1, 0, 2044525, 1350250125]$ |
\(y^2+xy=x^3+x^2+2044525x+1350250125\) |
24.2.0.b.1 |
$[(235291/11, 148605016/11)]$ |
303450.e1 |
303450e1 |
303450.e |
303450e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{8} \cdot 5^{8} \cdot 7 \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$76377600$ |
$3.587692$ |
$6257929415/47029248$ |
$0.97389$ |
$5.24825$ |
$[1, 1, 0, 35452925, 281312642125]$ |
\(y^2+xy=x^3+x^2+35452925x+281312642125\) |
14.2.0.a.1 |
$[ ]$ |
303450.f1 |
303450f1 |
303450.f |
303450f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{9} \cdot 7^{7} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$4.059916362$ |
$1$ |
|
$2$ |
$3483648$ |
$2.014702$ |
$-40112221740049/44471322000$ |
$0.95630$ |
$3.78008$ |
$[1, 1, 0, -117875, -26647875]$ |
\(y^2+xy=x^3+x^2-117875x-26647875\) |
420.2.0.? |
$[(745, 16940)]$ |
303450.g1 |
303450g1 |
303450.g |
303450g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{7} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 17^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$29.69614147$ |
$1$ |
|
$0$ |
$26127360$ |
$3.022194$ |
$-1184052061112257/34349180544$ |
$0.97855$ |
$4.86514$ |
$[1, 1, 0, -15924050, -25070599500]$ |
\(y^2+xy=x^3+x^2-15924050x-25070599500\) |
2856.2.0.? |
$[(3359105666037241/740089, 131960079764258809579692/740089)]$ |
303450.h1 |
303450h1 |
303450.h |
303450h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{11} \cdot 7 \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18800640$ |
$2.815823$ |
$-142843688929/16800000$ |
$0.90037$ |
$4.61004$ |
$[1, 1, 0, -5202150, 5007364500]$ |
\(y^2+xy=x^3+x^2-5202150x+5007364500\) |
420.2.0.? |
$[ ]$ |
303450.i1 |
303450i2 |
303450.i |
303450i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{9} \cdot 7^{6} \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$5.976843360$ |
$1$ |
|
$10$ |
$8110080$ |
$2.358273$ |
$2383015010293/1372257936$ |
$1.18215$ |
$4.07859$ |
$[1, 1, 0, -591325, -12537875]$ |
\(y^2+xy=x^3+x^2-591325x-12537875\) |
2.3.0.a.1, 84.6.0.?, 170.6.0.?, 7140.12.0.? |
$[(-65, 5095), (1310, 37595)]$ |
303450.i2 |
303450i1 |
303450.i |
303450i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{9} \cdot 7^{3} \cdot 17^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$23.90737344$ |
$1$ |
|
$5$ |
$4055040$ |
$2.011696$ |
$861985991413/2370816$ |
$0.95231$ |
$3.99804$ |
$[1, 1, 0, -421325, -105187875]$ |
\(y^2+xy=x^3+x^2-421325x-105187875\) |
2.3.0.a.1, 84.6.0.?, 340.6.0.?, 3570.6.0.?, 7140.12.0.? |
$[(-381, 651), (906, 15603)]$ |
303450.j1 |
303450j1 |
303450.j |
303450j |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{20} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$7140$ |
$48$ |
$1$ |
$1.426376769$ |
$1$ |
|
$0$ |
$1152000$ |
$1.433718$ |
$-287137850384705/22020096$ |
$1.06920$ |
$3.56569$ |
$[1, 1, 0, -68320, 6845440]$ |
\(y^2+xy=x^3+x^2-68320x+6845440\) |
5.6.0.a.1, 85.24.0.?, 420.12.0.?, 1428.2.0.?, 7140.48.1.? |
$[(1216/3, 6880/3)]$ |
303450.j2 |
303450j2 |
303450.j |
303450j |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{10} \cdot 7^{5} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$7140$ |
$48$ |
$1$ |
$7.131883845$ |
$1$ |
|
$0$ |
$5760000$ |
$2.238438$ |
$110072002975/65345616$ |
$1.14553$ |
$3.96249$ |
$[1, 1, 0, 362800, 13674000]$ |
\(y^2+xy=x^3+x^2+362800x+13674000\) |
5.6.0.a.1, 85.24.0.?, 420.12.0.?, 1428.2.0.?, 7140.48.1.? |
$[(6724/3, 705512/3)]$ |
303450.k1 |
303450k3 |
303450.k |
303450k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{8} \cdot 5^{6} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$4760$ |
$48$ |
$0$ |
$5.876128388$ |
$1$ |
|
$2$ |
$28311552$ |
$2.867874$ |
$14489843500598257/6246072$ |
$0.99019$ |
$5.05967$ |
$[1, 1, 0, -36695925, 85545487125]$ |
\(y^2+xy=x^3+x^2-36695925x+85545487125\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 140.12.0.?, 280.24.0.?, $\ldots$ |
$[(56169, 13209705)]$ |
303450.k2 |
303450k4 |
303450.k |
303450k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{6} \cdot 7^{4} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$4760$ |
$48$ |
$0$ |
$5.876128388$ |
$1$ |
|
$2$ |
$28311552$ |
$2.867874$ |
$34623662831857/14438442312$ |
$0.97689$ |
$4.58145$ |
$[1, 1, 0, -4905925, -2212830875]$ |
\(y^2+xy=x^3+x^2-4905925x-2212830875\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 280.24.0.?, 340.12.0.?, $\ldots$ |
$[(-1831, 26126)]$ |
303450.k3 |
303450k2 |
303450.k |
303450k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{6} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$4760$ |
$48$ |
$0$ |
$2.938064194$ |
$1$ |
|
$8$ |
$14155776$ |
$2.521301$ |
$3590714269297/73410624$ |
$0.94339$ |
$4.40192$ |
$[1, 1, 0, -2304925, 1321928125]$ |
\(y^2+xy=x^3+x^2-2304925x+1321928125\) |
2.6.0.a.1, 8.12.0.a.1, 140.12.0.?, 280.24.0.?, 340.12.0.?, $\ldots$ |
$[(770, 1715)]$ |
303450.k4 |
303450k1 |
303450.k |
303450k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{2} \cdot 5^{6} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$4760$ |
$48$ |
$0$ |
$1.469032097$ |
$1$ |
|
$5$ |
$7077888$ |
$2.174728$ |
$103823/4386816$ |
$1.04374$ |
$3.91387$ |
$[1, 1, 0, 7075, 61888125]$ |
\(y^2+xy=x^3+x^2+7075x+61888125\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 140.12.0.?, 238.6.0.?, $\ldots$ |
$[(375, 10650)]$ |
303450.l1 |
303450l1 |
303450.l |
303450l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{19} \cdot 5^{11} \cdot 7^{5} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$893030400$ |
$4.719345$ |
$418557259677940327871/244176605948362500$ |
$1.06972$ |
$6.32226$ |
$[1, 1, 0, 7444134100, -22211824285500]$ |
\(y^2+xy=x^3+x^2+7444134100x-22211824285500\) |
420.2.0.? |
$[ ]$ |
303450.m1 |
303450m1 |
303450.m |
303450m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{9} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$840$ |
$2$ |
$0$ |
$1.052804035$ |
$1$ |
|
$2$ |
$466560$ |
$0.901327$ |
$-288568081/47250$ |
$0.83621$ |
$2.77689$ |
$[1, 1, 0, -2275, 46375]$ |
\(y^2+xy=x^3+x^2-2275x+46375\) |
840.2.0.? |
$[(5, 185)]$ |
303450.n1 |
303450n2 |
303450.n |
303450n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$26542080$ |
$2.942562$ |
$9759322356711101/4572363442752$ |
$0.98898$ |
$4.64586$ |
$[1, 1, 0, -6433290, 2737905300]$ |
\(y^2+xy=x^3+x^2-6433290x+2737905300\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[ ]$ |
303450.n2 |
303450n1 |
303450.n |
303450n |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{3} \cdot 5^{3} \cdot 7^{4} \cdot 17^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$13271040$ |
$2.595989$ |
$106624540661059/76738572288$ |
$1.06789$ |
$4.28805$ |
$[1, 1, 0, 1427510, 324639700]$ |
\(y^2+xy=x^3+x^2+1427510x+324639700\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[ ]$ |
303450.o1 |
303450o1 |
303450.o |
303450o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$6.117314930$ |
$1$ |
|
$0$ |
$1244160$ |
$1.572327$ |
$-417267265/1850688$ |
$0.87112$ |
$3.34522$ |
$[1, 1, 0, -13155, -1714995]$ |
\(y^2+xy=x^3+x^2-13155x-1714995\) |
1428.2.0.? |
$[(19694/5, 2682393/5)]$ |
303450.p1 |
303450p2 |
303450.p |
303450p |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{24} \cdot 3^{2} \cdot 5^{8} \cdot 7 \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$317260800$ |
$4.160469$ |
$-4928752745352265/1056964608$ |
$1.00746$ |
$6.12707$ |
$[1, 1, 0, -3274066700, -72122050446000]$ |
\(y^2+xy=x^3+x^2-3274066700x-72122050446000\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 51.8.0-3.a.1.1, 714.16.0.? |
$[ ]$ |
303450.p2 |
303450p1 |
303450.p |
303450p |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{8} \cdot 7^{3} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$714$ |
$16$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$105753600$ |
$3.611160$ |
$434602535/64012032$ |
$1.01321$ |
$5.27871$ |
$[1, 1, 0, 14572675, -340918807875]$ |
\(y^2+xy=x^3+x^2+14572675x-340918807875\) |
3.4.0.a.1, 14.2.0.a.1, 42.8.0.a.1, 51.8.0-3.a.1.2, 714.16.0.? |
$[ ]$ |
303450.q1 |
303450q1 |
303450.q |
303450q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 7 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$0.482842053$ |
$1$ |
|
$16$ |
$124416$ |
$0.290592$ |
$-2088025/1008$ |
$0.96185$ |
$2.15975$ |
$[1, 1, 0, -150, 900]$ |
\(y^2+xy=x^3+x^2-150x+900\) |
14.2.0.a.1 |
$[(0, 30), (20, 70)]$ |
303450.r1 |
303450r1 |
303450.r |
303450r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3 \cdot 5^{6} \cdot 7^{2} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$7.484573847$ |
$1$ |
|
$0$ |
$241920$ |
$0.722200$ |
$-288568081/1176$ |
$0.89132$ |
$2.75771$ |
$[1, 1, 0, -2275, -42875]$ |
\(y^2+xy=x^3+x^2-2275x-42875\) |
24.2.0.b.1 |
$[(4011/5, 232169/5)]$ |
303450.s1 |
303450s2 |
303450.s |
303450s |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 7^{3} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14929920$ |
$2.727062$ |
$-37017366745/121331448$ |
$0.90857$ |
$4.44476$ |
$[1, 1, 0, -1466825, -1765747875]$ |
\(y^2+xy=x^3+x^2-1466825x-1765747875\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 168.8.0.?, 952.2.0.?, 2856.16.0.? |
$[ ]$ |
303450.s2 |
303450s1 |
303450.s |
303450s |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2856$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.177753$ |
$46969655/173502$ |
$0.84109$ |
$3.89948$ |
$[1, 1, 0, 158800, 56577750]$ |
\(y^2+xy=x^3+x^2+158800x+56577750\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 168.8.0.?, 952.2.0.?, 2856.16.0.? |
$[ ]$ |
303450.t1 |
303450t3 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{6} \cdot 7 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.120 |
2B |
$9520$ |
$192$ |
$1$ |
$2.623093496$ |
$1$ |
|
$4$ |
$10485760$ |
$2.410427$ |
$268498407453697/252$ |
$1.05727$ |
$4.74371$ |
$[1, 1, 0, -9710550, 11642949000]$ |
\(y^2+xy=x^3+x^2-9710550x+11642949000\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0.z.2, 28.12.0.h.1, $\ldots$ |
$[(1805, -440)]$ |
303450.t2 |
303450t6 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2 \cdot 3^{4} \cdot 5^{6} \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.217 |
2B |
$9520$ |
$192$ |
$1$ |
$5.246186993$ |
$1$ |
|
$2$ |
$20971520$ |
$2.757000$ |
$84448510979617/933897762$ |
$1.05309$ |
$4.65208$ |
$[1, 1, 0, -6603800, -6471932250]$ |
\(y^2+xy=x^3+x^2-6603800x-6471932250\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0.p.1, 112.96.1.?, 340.12.0.?, $\ldots$ |
$[(14655, 1737510)]$ |
303450.t3 |
303450t4 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{6} \cdot 7^{4} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.96 |
2Cs |
$4760$ |
$192$ |
$1$ |
$2.623093496$ |
$1$ |
|
$8$ |
$10485760$ |
$2.410427$ |
$124475734657/63011844$ |
$1.06499$ |
$4.13558$ |
$[1, 1, 0, -751550, 88440000]$ |
\(y^2+xy=x^3+x^2-751550x+88440000\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.f.1, 56.96.1.bp.2, 340.24.0.?, $\ldots$ |
$[(71, 5918)]$ |
303450.t4 |
303450t2 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{6} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.97 |
2Cs |
$4760$ |
$192$ |
$1$ |
$1.311546748$ |
$1$ |
|
$12$ |
$5242880$ |
$2.063854$ |
$65597103937/63504$ |
$1.01692$ |
$4.08483$ |
$[1, 1, 0, -607050, 181642500]$ |
\(y^2+xy=x^3+x^2-607050x+181642500\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.i.1, 28.24.0.c.1, 56.96.1.by.1, $\ldots$ |
$[(171, 9018)]$ |
303450.t5 |
303450t1 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 7 \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.102 |
2B |
$9520$ |
$192$ |
$1$ |
$2.623093496$ |
$1$ |
|
$5$ |
$2621440$ |
$1.717279$ |
$-7189057/16128$ |
$0.98224$ |
$3.48796$ |
$[1, 1, 0, -29050, 4196500]$ |
\(y^2+xy=x^3+x^2-29050x+4196500\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 14.6.0.b.1, 16.48.0.z.1, $\ldots$ |
$[(69, 1555)]$ |
303450.t6 |
303450t5 |
303450.t |
303450t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2 \cdot 3^{16} \cdot 5^{6} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.204 |
2B |
$9520$ |
$192$ |
$1$ |
$5.246186993$ |
$1$ |
|
$2$ |
$20971520$ |
$2.757000$ |
$6359387729183/4218578658$ |
$1.08314$ |
$4.44720$ |
$[1, 1, 0, 2788700, 686742250]$ |
\(y^2+xy=x^3+x^2+2788700x+686742250\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 16.48.0.e.1, 56.48.0.bc.1, $\ldots$ |
$[(14521, 1754368)]$ |
303450.u1 |
303450u1 |
303450.u |
303450u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{6} \cdot 3^{7} \cdot 5^{4} \cdot 7^{2} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$8.091408624$ |
$1$ |
|
$0$ |
$13571712$ |
$2.437286$ |
$18694465225/6858432$ |
$0.93226$ |
$4.17928$ |
$[1, 1, 0, -903275, -200292675]$ |
\(y^2+xy=x^3+x^2-903275x-200292675\) |
12.2.0.a.1 |
$[(-7106/3, 135751/3)]$ |
303450.v1 |
303450v1 |
303450.v |
303450v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2878848$ |
$1.810890$ |
$30294070465/588$ |
$0.90015$ |
$3.96252$ |
$[1, 1, 0, -362845, 83973505]$ |
\(y^2+xy=x^3+x^2-362845x+83973505\) |
12.2.0.a.1 |
$[ ]$ |
303450.w1 |
303450w1 |
303450.w |
303450w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{7} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11515392$ |
$2.456921$ |
$77817381935/266827932$ |
$0.94584$ |
$4.16357$ |
$[1, 1, 0, 496930, 299433120]$ |
\(y^2+xy=x^3+x^2+496930x+299433120\) |
14.2.0.a.1 |
$[ ]$ |
303450.x1 |
303450x2 |
303450.x |
303450x |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3 \cdot 5^{8} \cdot 7^{9} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55987200$ |
$3.304188$ |
$-6693187811305/131714173248$ |
$0.97226$ |
$4.98792$ |
$[1, 1, 0, -8294450, -54402943500]$ |
\(y^2+xy=x^3+x^2-8294450x-54402943500\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 84.8.0.?, 1428.16.0.? |
$[ ]$ |
303450.x2 |
303450x1 |
303450.x |
303450x |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{8} \cdot 7^{3} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1428$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18662400$ |
$2.754883$ |
$9056932295/181997172$ |
$0.92864$ |
$4.46169$ |
$[1, 1, 0, 917425, 1964519625]$ |
\(y^2+xy=x^3+x^2+917425x+1964519625\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 84.8.0.?, 1428.16.0.? |
$[ ]$ |
303450.y1 |
303450y1 |
303450.y |
303450y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{17} \cdot 3^{5} \cdot 5^{6} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2643840$ |
$1.729578$ |
$2280364702703/1560674304$ |
$1.00470$ |
$3.46815$ |
$[1, 1, 0, 45325, 1606125]$ |
\(y^2+xy=x^3+x^2+45325x+1606125\) |
24.2.0.b.1 |
$[ ]$ |
303450.z1 |
303450z1 |
303450.z |
303450z |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{6} \cdot 3^{8} \cdot 5^{2} \cdot 7^{3} \cdot 17^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25380864$ |
$2.944004$ |
$-1970890451905/144027072$ |
$0.96676$ |
$4.75161$ |
$[1, 1, 0, -9648415, 12238047685]$ |
\(y^2+xy=x^3+x^2-9648415x+12238047685\) |
14.2.0.a.1 |
$[ ]$ |
303450.ba1 |
303450ba1 |
303450.ba |
303450ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{9} \cdot 7 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1.483294676$ |
$1$ |
|
$4$ |
$1612800$ |
$1.460407$ |
$-34087423877/27216$ |
$1.11185$ |
$3.51779$ |
$[1, 1, 0, -55825, 5057125]$ |
\(y^2+xy=x^3+x^2-55825x+5057125\) |
420.2.0.? |
$[(135, -5)]$ |
303450.bb1 |
303450bb6 |
303450.bb |
303450bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2 \cdot 3^{2} \cdot 5^{8} \cdot 7 \cdot 17^{6} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.1 |
2B |
$28560$ |
$192$ |
$1$ |
$51.99753367$ |
$1$ |
|
$4$ |
$31457280$ |
$2.958084$ |
$524388516989299201/3150$ |
$1.03693$ |
$5.34398$ |
$[1, 1, 0, -121380150, -514768889250]$ |
\(y^2+xy=x^3+x^2-121380150x-514768889250\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.e.1, 56.24.0.bh.1, $\ldots$ |
$[(25501, 3589201), (13945, 703390)]$ |
303450.bb2 |
303450bb4 |
303450.bb |
303450bb |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( 2^{2} \cdot 3^{4} \cdot 5^{10} \cdot 7^{2} \cdot 17^{6} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.10 |
2Cs |
$14280$ |
$192$ |
$1$ |
$12.99938341$ |
$1$ |
|
$14$ |
$15728640$ |
$2.611511$ |
$128031684631201/9922500$ |
$1.00206$ |
$4.68505$ |
$[1, 1, 0, -7586400, -8045320500]$ |
\(y^2+xy=x^3+x^2-7586400x-8045320500\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 56.48.0.n.1, 120.48.0.?, $\ldots$ |
$[(4251, 189048), (6070, 408790)]$ |