Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 303450a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
303450.a2 | 303450a1 | [1, 1, 0, 7075, -15675] | [] | 1088640 | \(\Gamma_0(N)\)-optimal |
303450.a1 | 303450a2 | [1, 1, 0, -101300, -13172400] | [] | 3265920 |
Rank
sage: E.rank()
The elliptic curves in class 303450a have rank \(0\).
Complex multiplication
The elliptic curves in class 303450a do not have complex multiplication.Modular form 303450.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.