Minimal Weierstrass equation
\(y^2+xy=x^3+x^2-1466825x-1765747875\)
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 303450 \) | = | \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-1144002421081996875000 \) | = | \(-1 \cdot 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 7^{3} \cdot 17^{9} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{37017366745}{121331448} \) | = | \(-1 \cdot 2^{-3} \cdot 3^{-2} \cdot 5 \cdot 7^{-3} \cdot 17^{-3} \cdot 1949^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.063160172987311174459457970904\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 24 \) = \( 1\cdot2\cdot3\cdot1\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 303450.2.a.s
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 14929920 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 1.5158441516954681870269913016975949044 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(I_{3}\) | Non-split multiplicative | 1 | 1 | 3 | 3 |
\(3\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(5\) | \(3\) | \(IV^{*}\) | Additive | -1 | 2 | 8 | 0 |
\(7\) | \(1\) | \(I_{3}\) | Non-split multiplicative | 1 | 1 | 3 | 3 |
\(17\) | \(4\) | \(I_3^{*}\) | Additive | 1 | 2 | 9 | 3 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class 303450s
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-51}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.23800.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.539250880000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$6$ | 6.2.181317335625.5 | \(\Z/3\Z\) | Not in database |
$6$ | 6.0.259995960000.2 | \(\Z/6\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$18$ | 18.0.24471984964894327804779187849429396715646171000000000000.1 | \(\Z/9\Z\) | Not in database |
$18$ | 18.2.183842597736193020569714758137408000000000000.1 | \(\Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.