Show commands for:
SageMath
sage: E = EllipticCurve("p1")
sage: E.isogeny_class()
Elliptic curves in class 303450p
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
303450.p2 | 303450p1 | [1, 1, 0, 14572675, -340918807875] | [] | 105753600 | \(\Gamma_0(N)\)-optimal |
303450.p1 | 303450p2 | [1, 1, 0, -3274066700, -72122050446000] | [] | 317260800 |
Rank
sage: E.rank()
The elliptic curves in class 303450p have rank \(0\).
Complex multiplication
The elliptic curves in class 303450p do not have complex multiplication.Modular form 303450.2.a.p
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.