Properties

Label 303450v
Number of curves $1$
Conductor $303450$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 303450v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
303450.v1 303450v1 \([1, 1, 0, -362845, 83973505]\) \(30294070465/588\) \(102543634382700\) \([]\) \(2878848\) \(1.8109\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 303450v1 has rank \(0\).

Complex multiplication

The elliptic curves in class 303450v do not have complex multiplication.

Modular form 303450.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 4 q^{11} - q^{12} + 5 q^{13} + q^{14} + q^{16} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display