Properties

Label 303450l
Number of curves $1$
Conductor $303450$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 303450l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
303450.l1 303450l1 [1, 1, 0, 7444134100, -22211824285500] [] 893030400 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 303450l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 303450l do not have complex multiplication.

Modular form 303450.2.a.l

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + q^{11} - q^{12} + 5q^{13} + q^{14} + q^{16} - q^{18} - 4q^{19} + O(q^{20}) \)