Learn more

Refine search


Results (1-50 of 80 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
10830.a1 10830.a \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.500650622$ $[1, 1, 0, -9306948, -10930905648]$ \(y^2+xy=x^3+x^2-9306948x-10930905648\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? $[(51816, 11748252)]$
10830.a2 10830.a \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $13.00130124$ $[1, 1, 0, -527428, -204088112]$ \(y^2+xy=x^3+x^2-527428x-204088112\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? $[(6852072/23, 17829310484/23)]$
10830.b1 10830.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -11536123, 15092997727]$ \(y^2+xy=x^3+x^2-11536123x+15092997727\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.2, 120.8.0.?, 2280.16.0.? $[ ]$
10830.b2 10830.b \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 192767, 96438973]$ \(y^2+xy=x^3+x^2+192767x+96438973\) 3.4.0.a.1, 40.2.0.a.1, 57.8.0-3.a.1.1, 120.8.0.?, 2280.16.0.? $[ ]$
10830.c1 10830.c \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5118, -144012]$ \(y^2+xy=x^3+x^2-5118x-144012\) 6.2.0.a.1 $[ ]$
10830.d1 10830.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -8420693, 9401731647]$ \(y^2+xy=x^3+x^2-8420693x+9401731647\) 2.3.0.a.1, 24.6.0.a.1, 380.6.0.?, 2280.12.0.? $[ ]$
10830.d2 10830.d \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -525623, 147130593]$ \(y^2+xy=x^3+x^2-525623x+147130593\) 2.3.0.a.1, 24.6.0.d.1, 190.6.0.?, 2280.12.0.? $[ ]$
10830.e1 10830.e \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -167226398, -531563735292]$ \(y^2+xy=x^3+x^2-167226398x-531563735292\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 57.8.0-3.a.1.2, $\ldots$ $[ ]$
10830.e2 10830.e \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -149811758, -705838483788]$ \(y^2+xy=x^3+x^2-149811758x-705838483788\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 57.8.0-3.a.1.1, $\ldots$ $[ ]$
10830.e3 10830.e \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -9339438, -11090483532]$ \(y^2+xy=x^3+x^2-9339438x-11090483532\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 30.24.0.b.1, $\ldots$ $[ ]$
10830.e4 10830.e \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 30861522, -57697813068]$ \(y^2+xy=x^3+x^2+30861522x-57697813068\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 30.24.0.b.1, $\ldots$ $[ ]$
10830.f1 10830.f \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1117302, -458611884]$ \(y^2+xy=x^3+x^2-1117302x-458611884\) 40.2.0.a.1 $[ ]$
10830.g1 10830.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.596444863$ $[1, 1, 0, -19069263652, 1013550971091124]$ \(y^2+xy=x^3+x^2-19069263652x+1013550971091124\) 2.3.0.a.1, 5.12.0.a.2, 10.36.0.a.1, 20.72.0-10.a.1.3, 60.144.1-60.cj.1.9, $\ldots$ $[(3906520/7, -13983614/7)]$
10830.g2 10830.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $15.19288972$ $[1, 1, 0, -1191828872, 15836364428016]$ \(y^2+xy=x^3+x^2-1191828872x+15836364428016\) 2.3.0.a.1, 5.12.0.a.2, 10.36.0.a.1, 20.72.0-10.a.1.5, 30.72.1.i.2, $\ldots$ $[(118441240/77, 593692548/77)]$
10830.g3 10830.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.519288972$ $[1, 1, 0, -31748152, 59307836224]$ \(y^2+xy=x^3+x^2-31748152x+59307836224\) 2.3.0.a.1, 5.12.0.a.1, 10.36.0.a.2, 20.72.0-10.a.2.5, 60.144.1-60.cj.2.9, $\ldots$ $[(688, 194056)]$
10830.g4 10830.g \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.038577945$ $[1, 1, 0, 3369928, 5064449856]$ \(y^2+xy=x^3+x^2+3369928x+5064449856\) 2.3.0.a.1, 5.12.0.a.1, 10.36.0.a.2, 20.72.0-10.a.2.4, 30.72.1.i.1, $\ldots$ $[(2992, 203304)]$
10830.h1 10830.h \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $11.26957635$ $[1, 1, 0, -1097447, -442967949]$ \(y^2+xy=x^3+x^2-1097447x-442967949\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.y.1, 120.24.0.?, $\ldots$ $[(56611/6, 8796047/6)]$
10830.h2 10830.h \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.817394087$ $[1, 1, 0, -79427, -4617201]$ \(y^2+xy=x^3+x^2-79427x-4617201\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.s.1, 40.12.0-4.c.1.5, 76.12.0.?, $\ldots$ $[(-293/2, 7513/2)]$
10830.h3 10830.h \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.634788175$ $[1, 1, 0, -68597, -6941319]$ \(y^2+xy=x^3+x^2-68597x-6941319\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 76.12.0.?, 120.24.0.?, $\ldots$ $[(1382, 49709)]$
10830.h4 10830.h \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.817394087$ $[1, 1, 0, -3617, -144411]$ \(y^2+xy=x^3+x^2-3617x-144411\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.y.1, 76.12.0.?, $\ldots$ $[(1835/2, 76141/2)]$
10830.i1 10830.i \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -26684, -1675654]$ \(y^2+xy+y=x^3-26684x-1675654\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 228.12.0.? $[ ]$
10830.i2 10830.i \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2364, -2438]$ \(y^2+xy+y=x^3-2364x-2438\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[ ]$
10830.j1 10830.j \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -13004, 656102]$ \(y^2+xy+y=x^3-13004x+656102\) 3.8.0-3.a.1.2, 6.16.0-6.b.1.2 $[ ]$
10830.j2 10830.j \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 89881, -3212374]$ \(y^2+xy+y=x^3+89881x-3212374\) 3.8.0-3.a.1.1, 6.16.0-6.b.1.1 $[ ]$
10830.k1 10830.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.594257060$ $[1, 0, 1, -224189, 40779086]$ \(y^2+xy+y=x^3-224189x+40779086\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.1, 24.24.0-8.m.1.3, $\ldots$ $[(6076/3, 370066/3)]$
10830.k2 10830.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.297128530$ $[1, 0, 1, -18419, 201242]$ \(y^2+xy+y=x^3-18419x+201242\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.3, 76.12.0.?, $\ldots$ $[(-87, 1114)]$
10830.k3 10830.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.148564265$ $[1, 0, 1, -11199, -454334]$ \(y^2+xy+y=x^3-11199x-454334\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 12.12.0-4.c.1.2, 24.24.0-8.m.1.1, $\ldots$ $[(619, 14852)]$
10830.k4 10830.k \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.148564265$ $[1, 0, 1, 71831, 1609142]$ \(y^2+xy+y=x^3+71831x+1609142\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 24.24.0-8.d.1.3, 76.12.0.?, $\ldots$ $[(676, 18614)]$
10830.l1 10830.l \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1316214, 581105836]$ \(y^2+xy+y=x^3-1316214x+581105836\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 380.12.0.? $[ ]$
10830.l2 10830.l \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -81594, 9229852]$ \(y^2+xy+y=x^3-81594x+9229852\) 2.3.0.a.1, 20.6.0.e.1, 76.6.0.?, 190.6.0.?, 380.12.0.? $[ ]$
10830.m1 10830.m \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.032981354$ $[1, 0, 1, 11, 32]$ \(y^2+xy+y=x^3+11x+32\) 40.2.0.a.1 $[(-2, 2)]$
10830.n1 10830.n \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -10838, 426506]$ \(y^2+xy+y=x^3-10838x+426506\) 2.3.0.a.1, 24.6.0.a.1, 380.6.0.?, 2280.12.0.? $[ ]$
10830.n2 10830.n \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -8, 19298]$ \(y^2+xy+y=x^3-8x+19298\) 2.3.0.a.1, 24.6.0.d.1, 190.6.0.?, 2280.12.0.? $[ ]$
10830.o1 10830.o \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $0.197400019$ $[1, 0, 1, -673, -4072]$ \(y^2+xy+y=x^3-673x-4072\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 228.12.0.? $[(-11, 50)]$
10830.o2 10830.o \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $0.394800038$ $[1, 0, 1, -293, 1856]$ \(y^2+xy+y=x^3-293x+1856\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[(15, 22)]$
10830.p1 10830.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -177785288, -912428607022]$ \(y^2+xy+y=x^3-177785288x-912428607022\) 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 152.24.0.?, 570.6.0.?, $\ldots$ $[ ]$
10830.p2 10830.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -11248768, -13887315694]$ \(y^2+xy+y=x^3-11248768x-13887315694\) 2.3.0.a.1, 4.12.0-4.c.1.1, 76.24.0.?, 120.24.0.?, 2280.48.0.? $[ ]$
10830.p3 10830.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -11111588, -14257372462]$ \(y^2+xy+y=x^3-11111588x-14257372462\) 2.6.0.a.1, 4.12.0-2.a.1.1, 60.24.0-60.b.1.6, 76.24.0.?, 1140.48.0.? $[ ]$
10830.p4 10830.p \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -685908, -228577454]$ \(y^2+xy+y=x^3-685908x-228577454\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ $[ ]$
10830.q1 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.908112353$ $[1, 1, 1, -1925401, 1027521599]$ \(y^2+xy+y=x^3+x^2-1925401x+1027521599\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(821, 588)]$
10830.q2 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.908112353$ $[1, 1, 1, -163721, 3402143]$ \(y^2+xy+y=x^3+x^2-163721x+3402143\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.3, $\ldots$ $[(397, 884)]$
10830.q3 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.454056176$ $[1, 1, 1, -120401, 15999599]$ \(y^2+xy+y=x^3+x^2-120401x+15999599\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.1, 24.96.1.cp.2, $\ldots$ $[(99, 2200)]$
10830.q4 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.724337059$ $[1, 1, 1, -104156, -12981481]$ \(y^2+xy+y=x^3+x^2-104156x-12981481\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.4, $\ldots$ $[(80263/14, 9424213/14)]$
10830.q5 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $8.724337059$ $[1, 1, 1, -24736, 1279463]$ \(y^2+xy+y=x^3+x^2-24736x+1279463\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.24.0.g.1, $\ldots$ $[(108583/18, 31370491/18)]$
10830.q6 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.362168529$ $[1, 1, 1, -6686, -193417]$ \(y^2+xy+y=x^3+x^2-6686x-193417\) 2.6.0.a.1, 3.4.0.a.1, 6.24.0.a.1, 12.48.0.a.2, 24.96.1.cp.4, $\ldots$ $[(1303/2, 44179/2)]$
10830.q7 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $0.727028088$ $[1, 1, 1, -4881, 427503]$ \(y^2+xy+y=x^3+x^2-4881x+427503\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.1, $\ldots$ $[(-21, 732)]$
10830.q8 10830.q \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.181084264$ $[1, 1, 1, 534, -14361]$ \(y^2+xy+y=x^3+x^2+534x-14361\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.c.1, 6.12.0.a.1, 12.48.0.c.2, $\ldots$ $[(321, 5615)]$
10830.r1 10830.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -9632751, 11474043573]$ \(y^2+xy+y=x^3+x^2-9632751x+11474043573\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 228.12.0.? $[ ]$
10830.r2 10830.r \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -853231, 15014069]$ \(y^2+xy+y=x^3+x^2-853231x+15014069\) 2.3.0.a.1, 12.6.0.g.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[ ]$
10830.s1 10830.s \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.412895790$ $[1, 1, 1, -36, -111]$ \(y^2+xy+y=x^3+x^2-36x-111\) 3.4.0.a.1, 6.8.0.b.1, 57.8.0-3.a.1.1, 114.16.0.? $[(9, 15)]$
Next   displayed columns for results